

Fuel Ethanol Laboratory Conference

October 6, 2021

Our History: Building the Clean Energy Economy

History

Since 2009; Des Moines, Iowa; Growing to 40 employees; focused on fuels decarbonizing the transportation sector

Vision

To be a global leader in developing solutions for a sustainable world

Mission

To help build out a clean energy economy by providing in-depth knowledge of low carbon regulations, technologies and markets

Future

Transportation, farming, power, industry, buildings

Values

Our people are the ambassadors of our brand. The trust they build with clients is the foundation of our success.

We are consistent across all service areas

- 1. Fuel agnostic
- 2. Technology agnostic
- 3. National and International
- 4. Market-driven
- 5. Low-carbon
- 6. We don't participate in the value of products or credits

The Importance of Net-Zero Ethanol

In a world demanding net-zero, the way forward for ethanol is to take advantage of its carbon sinks

- 1. Sustainable Agriculture
- 2. Soil Carbon Sequestration
- 3. Carbon Capture and Sequestration

https://tinyurl.com/nzethanol

Starting Point: RFA's Commitments

RFA members' July 27, 2021, commitments:

- 1. 70% reduction by 2030
- 2. Net-zero life-cycle GHG emissions

https://ethanolrfa.org/wpcontent/uploads/2021/07/RFA-Net-Zero-Commitment-Letter-to-President-Biden-.pdf

CATEGORY	CARBON INTENSITY (gCO2e/MJ)
Fuel Production	29.6
Agriculture	26.0
Land Use Change	3.9
Fuel and Feedstock Transport	3.1
Denaturant	1.3
Tailpipe	0.3
Co-product Credit	-12.8
Total	51.4

Source: Scully et al 20 21 *Environ. Res. Lett.,* Carbon intensity of corn ethanol. <u>https://onlinelibrary.wiley.com/doi/10.1002/bbb.2225</u>

Pathways to Net-Zero Ethanol =

MARKET READINESS	LOW CI INPUTS*	SUSTAINABLEMANAGEMENTRENEWABLEPRACTICES BY CORNPROCESS ENERGYGROWERS		CARBON CAPTURE AND STORAGE BY ETHANOL PRODUCERS
Currently Available	Corn starch <i>,</i> kernel fiber	No till, cover crops, soil carbon sequestration	Biomass, RNG, wind, solar, chp including both electric and process heat demand	Carbon capture and sequestration, enhanced oil recovery including pipeline, truck, rail
Emerging		Biochar, Iow-CI fertilizer	Pyrolysis, H2	

Greenhouse Gases Impact

GAS NAME (FORMULA)	100-YEAR GLOBAL WARMING POTENTIAL*	TECHNOLOGIES		
		CCS		
		EOR		
		Biomass heat		
		Landfill gas		
Carbon dioxide (CO ₂)	1	Solar		
		Wind		
		Efficiency		
		Wet or mod DGS		
		Fertilizer		
		Dairy manure		
Methane (CH ₄)	34	Swine manure		
		Landfill avoidance		
		Cover crops		
Nitrous oxide (N ₂ O)	298	No till		
		Fertilizer		

*IPCC 2013 (AR5)

Components of Ethanol Carbon Intensity

- Starch Ethanol CI = 51.4 + (32) for CCS + (19.2) in Fuel Production CI = Net Zero Ethanol
- The (19.2) can be accomplished via combination of RNG, biomass, wind, solar, biochar (*i.e., liquid fuel battery* storage)

Figure 5. GHG emission categories and total CI of corn ethanol.

Source: Env. Research Letter 16 043001, Scully et al 2021

Fig 2. Credit Percentage by Fuel Q1 2011 - Q2 2020

Ethanol

Low-CI Fuels Sell into California

2020 Volume-weighted Average Carbon Intensity by Fuel Type for Non-Liquid Fuels

Volume-Weighted Average CI for Non-Liquid Fuels

Volume-Weighted Sales into California

2020 Volume-weighted Average Carbon Intensity by Fuel Type for Liquid Fuels

Key Contributors to Ethanol Carbon Intensity

- Indirect land use change (iLUC)
- Corn farming and transportation
 - Fertilizer
 - N₂O emissions from field
 - Fuel used
- Ethanol plant
 - Energy (natural gas, electricity, etc.)
 - Chemicals and enzymes
 - Yields of ethanol and co-products
- Transportation and distribution
- End use as transportation fuel

Starch Ethanol Life-Cycle Analysis Factors

Key Contributors to Ethanol Carbon Intensity

Parameter	Assumed Value	Contribution to CI of EtOH	Potential Reduction Method	Comment
lluc		20	Better and more accurate modeling	Fixed under current LCFS
Corn farming and transport	Default in CA-GREET	28	No till, less fertilizer, less fuel use	Almost fixed under current LCFS
at Ethanol Plant		Ethanol Plant		
Co-product credit	5 Dry lbs. DGS/Gal	-11	Higher quality co-products	Almost fixed under current LCFS
Natural gas	24,000 Btu/Gal	20	Biogas, biomass boiler, CHP, heat recovery	Plant-specific
Electricity	0.7 Kwh/Gal	6	On-site renewable power, CHP, higher efficiency	Plant-specific
Chemicals	Industrial typical	2	Advanced enzymes, less chemical use	Plant-specific
T&D of Ethanol	Midwest to California by rail for 1,899 miles	2	Higher transportation efficiency	Plant-specific, not much flexibility
	Total	67.0		

Starch/Fiber Ethanol Pathways Under the LCFS

CI Range	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80+
Feedstock			Waste Wine, Corn Kernel Fiber, Sugar Beets, Stover	Sugarcane, Molasses, Stover, Corn Kernel Fiber, Sorghum	Sugarcane, Molasses, Waste Wheat Slurry, Waste Beverage	Corn, Sorghum	Corn, Sorghum	Corn, Sorghum	Corn, Sorghum
								Energy e	fficiency
							WDG, oi	n-site solar,	wind, CHP
						Biomass	heat		
					Carbon cap	ture and se	questratior	n (CCS)	
	Manure/agricultural residue biogas, kernel fiber								

Various combinations of above technologies

How Nebraska Ethanol Can Benefit

Applicant & Pathway Description	Capacity (MGPY)	Current Certified Cl	LCFS Basis Price (79.9- CI)* \$0.015-\$0.25-\$0.15- transload, \$		Deltas Addl. Gross (California - Chicago ethanol		. Gross fit/gal nanol	Addl. Gross Profit/year		
Nebraska Kernel Fiber Ethanol	4	25.00	\$	0.42	\$	0.43	\$	0.86	\$	3,424,000
Nebraska Kernel Fiber Ethanol w/ CCS	4	(5.00)	\$	0.87	\$	0.43	\$	1.31	\$	5,224,000
Nebraska WDG Ethanol	100	60.00	\$	(0.10)	\$	0.43	\$	0.33	\$ 3	33,100,000
Nebraska WDG Ethanol w/ CCS	100	30.00	\$	0.35	\$	0.43	\$	0.78	\$	78,100,000

Notes:

1. Assumed 79.9 OPIS price basis and \$0.25 discount per gallon and \$0.15 additional shipping cost vs. Chicago

- 2. Assumed 4% kernel fiber gallons
- 3. Example is August 11, 2021 OPIS (California price of \$2.665 Chicago price of \$2.2325)
- 4. CCS is assumed to reduce CI by 30 CI points

Manure Considerations on Avoided Methane Credits

- Type of manure matters
 - Dairy and swine manures only get methane avoidance credit
 - Beef cattle excluded
- What is the baseline manure management practice?
 - Lagoon scores are best
 - No lagoons = no methane avoidance credit
- How much of the manure goes to lagoons?
 - Can have 40- to 75-point Cl impact

- How often are lagoons cleaned out? Agitated?
 - Can have 50- to 100-point Cl impact
- How much RNG will be produced?
 - Set amount of methane avoidance credit

Available Tier 1 Simplified Calculators

Biomethane from North American Landfills

Biomethane from Anaerobic Digestion of Wastewater Sludge

Biomethane from Organic Waste

Biomethane from Dairy and Swine Manure

https://ww3.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm

Dairy and Swine Manure Considerations

Baseline

- VS% to lagoon (Solid separation, other manure management systems)
- Lagoon cleanout
- Look back period if multiple manure management systems have been used
- Carryover of manure

Project

- Biogas yield
- VS in effluent to storage lagoon
- Process energy
- Real farm data vs. CARB default data for cows related

What is Carbon Capture and Sequestration (CCS)?

- Carbon is permanently taken from the atmosphere
- For CARB that means 100 years of storage

Source: https://www.climatechangenews.com/

Approximate Ethanol MGPY Technologies **Announced Projects** CI Reduction, g/MJ **Ethanol** ADM Decatur TBD 375 **Red Trail** (32)* 60 Catahoula/Chief Ethanol TBD 110 Summit Agriculture Group / Corn LP; Dakota Ethanol; Glacial Lakes Energy; Golden Grain **Carbon Capture and** Energy; Granite Falls Energy; Green Plains, Inc.; **Sequestration** Heron Lake BioEnergy; Highwater Ethanol; Homeland Energy Solutions; Lincolnway TBD 1.700 Energy; Little Sioux Corn Processors; Pine Lake Corn Processors; Redfield Energy; Ringneck Energy; Siouxland Energy Cooperative; and **Tharaldson Ethanol Enhanced Oil Recovery** Occidental Petroleum / White Energy $(25.56)^*$ 240

CCS Projects

* CARB published design-based pathway estimate

LCFS Model - Corn farming and transportation burden of 28 to 30 g/MJ

- Farming energy, 3.2+/- g/MJ
- Fertilizers, 12 +/- g/MJ
- N₂0 emissions from soil, 14.8 +/- g/MJ
- Plus soil carbon sequestration

Establish lower site-specific farm practices scores and monetize the carbon reduction through the ethanol plant on ethanol shipped to LCFS

Argonne announces average ethanol CI reduced from 58 to 45 g/MJ – Biofpr – September/October 2021

Site-Specific Farm Practice Challenges

Corn farming and transportation burden of 30 g/MJ

- Establish standards for low-CI farming practices;
 - No till
 - Fertilizer usage
 - Nutrient runoff prevention
 - Carbon sequestration (CCS)
- Establish farm practices verification program for Midwest
- The farm practices verification program must be recognized by voluntary and LCFS programs

Site-Specific Farm Practices =

Based upon USDA Comet Model for Nebraska no till and cover crops

- No till, 0.3-0.6 MT CO2/acre per year
- Cover crops, 0.2-0.4 MT CO2/acre per year
- Combined no till plus cover crops, 0.5-1.0 MT CO2/acre/year

Here we could be tied into a voluntary or transportation market.

EcoEngineers white paper: Midwest soil could be huge carbon reservoir

https://tinyurl.com/carbon-reservoir

Description	Average
No Till Average CS	0.152 MT C/acre/yr
Cover Crops Average CS	0.10 MT C/acre/yr
Total CS as Carbon	0.25 MT C/acre/yr
Total CS as CO2	0.93 MT CO2/acre/yr
Per Acre \$35/MT CO2 (BCG 2025)	\$32.40 / acre
Per Acre \$80/MT CO2 (BCG 2030)	\$74.07 / acre
Per Acre \$100/MT CO2 (50% LCFS)	\$92.59 / acre

Evaluating Kernel Fiber Ethanol CI - LCFS

- No iLUC (Indirect land use change, 19.8 gCO₂e/MJ for Corn Ethanol)
- No corn farming and transportation burden, 30.1 gCO₂e/MJ
- CI is in the range of 20-40 gCO₂e/MJ
- Adaption of non-baseline methods have increased converted fraction of cellulose vs. early baseline methods (2-5% kernel fiber gallons is common in-situ coprocessing and 7-10% through separate processing)
- ASTM E3181-20 Standard Practice for Determination of the Converted Fraction of Starch and Cellulosic Content From a Fuel Ethanol Production Facility

This presentation is based only upon the LCFS. If the RFS re-opened kernel fiber in 2021 or beyond, the kernel fiber gallon could be worth D3-D6 value now at \$1.20 and IRS Producer Tax Credit of \$1.01

Separate vs. Simultaneous

Fuel Type	Feedstock Type	Production Process	D-Code
Cellulosic ethanol (60)	Cellulosic biomass – agricultural residues (70)	Cellulosic production process (280)	3
Renewable compressed natural gas, renewable liquefied natural gas, and renewable electricity	Biogas from waste digesters	Any	5
Renewable compressed natural gas, renewable liquefied natural gas, renewable electricity	Biogas from landfills, municipal wastewater treatment facility digesters, agricultural digesters, and separated MSW digesters; and biogas from the cellulosic components of biomass processed in other waste digesters	Any	3

Registration Requirements:

- Process diagram; description of the treatment process; description of pre-treatment; thirdparty engineer verification
- Peer review of non-VCSB laboratory methods
- Initial converted fraction based on a minimum of three batch trials
- Initial converted fraction must be submitted with the registration and remains valid for first 500,000 gallons
- The overall fuel yield including supporting data and a discussion of possible variability
- The cellulosic converted fraction including supporting data and a discussion of variability
- A description of how the cellulosic converted fraction is determined

Method A Feedstock Energy Equation

$$FE = M (1 - m) \cdot CF \cdot E$$

$$FE_{mf} = (1000 \cdot 0.04) (1 - 0.15) (0.35) (7,600)$$

$$= 90,440$$

$$FE_{st} = (1000 \cdot 0.75) (1 - 0.15) (0.95) (7,600)$$

$$= 4,602,750$$

(Simultaneous or in-situ biochemical processing)

$$V_{RIN} = EV \cdot VS \cdot \frac{FE_{D3}}{FE_{D6} + FE_{D3}}$$

$$V_{RIND3} = 1.0 \cdot 64,158 \cdot \frac{90,440}{4,602,750 + 90,440}$$

$$V_{RIND3} = 1,236 \text{ gallons for D3}$$

- The Quality Assurance Program (QAP) is a voluntary audit program for RIN generators
- Put into place after widespread RIN fraud destabilized RIN markets
- Auditors must receive annual approval by the USEPA and meet strict independence criteria

Benefits:

- RINs receive a "Q-RIN" tag in EMTS
- Obligated parties who utilize Q-RINs for their compliance obligation receive an affirmative defense against notices of violation.

LCFS Pathway Types in 2019 and Beyond

Look-up Table Values (§ 95488.5. Table 7-1)	Tier 1 Pathways (Tier 1 Calculators)	Tier 2 Pathways (CA-GREET 3.0)
CARBOB	Biodiesel	Tier 1 Fuels using Innovative Method meeting substantiality
Diesel	Renewable Diesel	requirements:
Diesei	LNG, CNG	 5% lower if reference
CNG	from North American NG	above 20 Cl
Propane	Ethanol Starch	 1 CI lower if reference below 20 CI
Hydrogen	FiberSugarcane	Wet Mill Ethanol
Electricity	Biomethane	Plastic to Fuel
 Grid 100% Zara Cl 	 N.A. Landfills Anaprophic Direction 	Pyrolysis Oil
 Smart Charging 	of Wastewater	Next Generation Fuels
	 Organic Waste 	

Dairy and Swine Manure

Kernel fiber ethanol

- Converted fraction re-calculated within 10 business days of producing 500,000 gallons
- Changes to testing method must be approved by CARB
- Physical inventory limits apply
- Multiple co-products wet, mod, dry DDG
 - Associate the produced ethanol in proportion to the "bone dry" co-product stream fraction

* § 95491.(d)(1)(B)

Adding economic technology to your plant location to convert low value fiber to higher value ethanol and higher protein feed

Types of LEFS Reporting

LRT reporting

 These quarterly reports and annual report are to report the number of gallons and fuel pathways used related to LCFS credits

LCFS Verification

 LCFS verification will have an option to be completed quarterly or annually, with an annual verification report due August 31 of each year

Fuel Pathway Report

- Must be completed by all fuel pathway holders starting in 2021 for 2019 and 2020 data
- Report uses same calculator as original application, but it includes the most recent calendar year of operational CI data (rolling two-year data period)

- Each entity responsible for obtaining validation and verification must retain a Monitoring Plan
- Includes:
 - General overview of facility and boundaries
 - Methods, processes, and methodologies used to collect and record data
 - Sources of data and related diagrams
 - Identification of measurement devices
 - Calibration information, and more
- Should be in place when applying for 3.0 pathway

LCFS Verification Requirements

Initial Validation (one time)

- Site Visit (starting 2020)
- Initial review and statement to certify pathway

Ongoing Verification Services

- Fuel pathway report review
 - Verification of CI score components
- Verification report
 - Verification of data collected and reported
- Site visit
 - Annual visit for verification

(Verification may occur on a quarterly or annual basis)

CARB Overview of Program Structure

In-situ Kernel Fiber Timetable

Phase	Activity	Schedule (Months)	Calendar Days	Ledger (11K Fiber GPD)
Rota Testing	Beta Testing, Enzyme Trials, Fiber Conversion Testing	Varies	Varies	
Deta lesting	Determine Enzyme Type/Dosage	vanes	Varies	
	Start enzyme dosing		0	
Patch Trials	Plant at steadiy state	1	10	
Dalli Indis	First batch sample, pre-conversion	T	Q	-
	Batch sampling (3 minimum), pre and post-conversion, including prep and ship		0	
	Start 90 Day Data, Begin Temporary Pathway (CI=50), Date of last batch sample			-
	Fiber and Starch Conversion Data from Lab		90	-
	Calculation of %Kernel Fiber Gallons by Producer			-
	Hit 500K Cellulosic Gallons			500К
90-Day Data	Deadline to Recertify 500K Cellulosic Gallons	3		Deadline
	Hit 500K Cellulosic Gallons			500K
	90 Day Data Set Complete			-
	Deadline to Recertify 500K Cellulosic Gallons			Deadline
	Submit Data to EcoEngineers		7	-
	Pathway Application Preparation		30	-
Pathway	Pathway Application Submission to CARB		50	-
Droparation	Hit 500K Cellulosic Gallons			500K
Preparation,	CARB Review		15	-
validation,	Deadline to Recertify 500K Cellulosic Gallons	3		Deadline
CARB	Validation		30-45	-
Approval	Hit 500K Cellulosic Gallons			500K
	CI Certification by CARB, Begin Provisional Pathway (CI = 25 +/-)		15	Deadline

Kernel Fiber Now[™] connects you to our team of professionals who can help connect you to cellulosic ethanol markets:

- 80 million current but expanding from 300 million to 1.5 billion gallon (2-10%) potential ethanol market
- LCFS open and encouraging new kernel fiber pathways
- Non-baseline ASTM E3180-20 count more kernel fiber gallons
- Kernel fiber gallons can be a 40 CI points reduction vs. starch gallons (at 1.6 cents/gallon this could be a total market value adder of \$0.50-\$0.86/gal)
- If the NIST Standards, NREL Standard Method, and RFS registration of in-situ coprocessing opens up you could add D3-D6 split of \$1.30 and potentially IRS Credit of \$1.01 (or you could do this now using separate hydrolysis)

Creating sustainable solutions for a better tomorrow

Jim Ramm, P.E.

jramm@ecoengineers.us

www.ecoengineers.us