Mid-Infrared Spectroscopy Theory and Applications for Fuel Analysis

Warren Edmunds, PhD 5 October 2021

What is Infrared Spectroscopy?

The infrared region can be divided into **three** sub-regions:

	Wavelength	Wavenumber	Frequency
	λ (μm)	$\overline{\upsilon}$ (cm ⁻¹)	v (Hz)
Near IR	0.78 – 2.5	12800 – 4000	3.8 x 10 ¹⁴ – 1.2 x 10 ¹⁴
Mid IR	2.5 – 50	4000 – 200	1.2 x 10 ¹⁴ – 6.0 x 10 ¹²
Far IR	50 – 100	200 – 10	6.0 x 10 ¹² – 3.0 x 10 ¹¹

- IR spectroscopists speak in *wavenumbers*
- Number of waves per centimeter
- Inversely proportional to wavelength
- Directly proportional to energy

 $E = \frac{hc}{\lambda} = h\overline{\nu}$

- When a molecule is radiated with IR light, some of the wavelengths will be absorbed
- Promotes molecule into excited vibrational state
- Molecules absorb IR light at discrete frequencies depending on the types of chemical bonds present

Molecular vibrations

- Atoms vibrate within molecules
 - stretching, bending
 - combinations
- Energy or frequency of vibration depends on:
 - mass of the atoms
 - strength of the bond
 - environment of the molecule
- Collective vibrations are unique to a given molecule
 - IR spectrum is considered a "molecular fingerprint"

7

Functional groups within a molecule have characteristic peak positions

What happens as you add functional group?

- FTIR measures the chemical structure of compounds
- Can be thought of as a 'fingerprint' or 'barcode' for a given compound

Quantitative analysis by IR

Assign numerical value to constituent or property value based on spectroscopic data

PerkinElmer

For the Better

- Requires correlation of spectral data with reference values determine by an independent technique
- Univariate or chemometrics (multivariate) analysis

- Univariate analysis
- Simple sample matrix
- Ability to assign concentration to a single peak or small region of spectrum
- Peak height/area, peak ratios
- Additive when multiple components are present
- Assumes linear relationship between measured absorbance and concentration

 $A = \varepsilon b c$

- A = Absorbance
- b = pathlength
- ϵ = molar absorptivity
- c = concentration

Introduction to chemometrics

- > Application of *multivariate methods* for near-infrared data
- Utilizes entire spectrum
- Correlates spectral variance to property value
- Qualitative/classification
 - Principal component analysis (PCA)
 - Soft independent modeling of class analogy (SIMCA)
- Quantitative
 - Principal component regression (PCR)
 - Partial least square (PLS)

For the Better

Similarities

- Measuring molecular absorptions
- Molecule must have a dipole moment to be "IR active"
- Fast data collection

Differences

Mid-IR

- 4,000 400 cm⁻¹
- Primary vibrations
- High structural selectivity
- Shorter pathlength
- Smaller sample
- more sample preparation
- Beer's Law calibration
- Good for homogenous materials

Near-IR

- 12,000 4000 cm⁻¹
- Overtone and combination vibrations
- Low structural selectivity
- Longer pathlength
- Larger sample
- Less samples preparation
- Multivariate calibration
- Good for heterogenous materials

Mid-IR Applications for Fuels

Fuels Analysis

- EN 14078 Fatty Acid Methyl Esters (FAME) in middle distillates fuels
- ASTM D7371 FAME analysis in Biodiesel
- ASTM D5845 Determination of MTBE, ETBE, TAME, DIPE, Methanol, Ethanol, and tert-Butanol in Gasoline by Infrared Spectroscopy
- ASTM D6277 Determination of Benzene in spark-ignition fuels
- Lubricants (oil and grease) analysis
 - ASTM E1412 petroleum and synthetic lubricants, and hydraulic fluids
 - JOAP petroleum, synthetic lubricants, and hydraulic fluids
- Environmental Hydrocarbon analysis
 - ASTM D7066-04 Extraction into hydrocarbon-free solvent then transmission FTIR

- Bioethanol can be produced by fermentation of sugars
- Fermentation produces bioethanol and by-products
- Bioethanol purity is important for suitability and performance as a fuel
- Regulatory bodies limit the allowable concentration of impurities and specify test methods
 - ASTM D4806: Standard Specification for Denatured Fuel Ethanol for Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel
 - EN 15376: Automotive fuels Ethanol as a blending component for petrol Requirements and test methods
- Test methods can be time-consuming, use chemicals, and expensive
- FT-IR can be used as an alternative

Contaminates measured

- Methanol, water, C3-C5 alcohol, gasoline denaturant
- Method used
 - Mid-IR (FTIR) spectroscopy
 - Liquid flow cell with 0.1 mm pathlength
 - Less than 2 min analysis time per sample
- Samples
 - 60 ethanol samples spiked with contaminates in varying concentrations

Measuring contaminates in bioethanol

- Principal component regression (PCR) models were created
- Cross-validation results show good performance of models

PerkinElmer

For the Better

Maximum levels of impurities compared with detection limit of FTIR method

Parameter	ASTM D4806	EN 15376	FTIR LOD (5xSEP)
Water	1.0% v (1.3%m)	0.3%m	0.15%m
Methanol	0.5%v (0.5%m)	1.0%m	0.12%m
C3-C5 alcohols	N/A	2.0%m	0.48%m
Gasoline (denaturant)	1.96-5.0%v (~2-5%m)	N/A	0.7%m

Results

- Feasibility study implementation required model validation and maintenance
- Detection limit of FTIR method is defined as 5 times the standard error of prediction (SEP)
- All detection limits are well below required minimum concentrations
- All impurities detected simultaneously
- 2-minute or less data collection time

- Biodiesels can be produced from renewable biological sources and used oil waste streams
- The transesterification reaction converts triglycerides to glycerol and fatty acid methyl esters (FAME)
- ASTM D6277 and EN 14078 are two methods for measuring FAME (biodiesel) concentrations in petroleum diesel.

FAME in Biodiesel (EN 14078)

- EN 14078 – Liquid petroleum products – Determination of fatty acid methyl esters (FAME) in middle distillates infrared spectroscopy method
- Liquid Flow Cell Beer's Law method based on the carbonyl (C=O) absorption band at 1745 cm-1

FTIR liquid flow cell

1580

FAME in Biodiesel (ASTM D7371)

- ASTM D7371: Determination of biodiesel (fatty acid methyl ester) content in diesel fuel oil using mid infrared spectroscopy
- UATR Method Multivariate partial least squares (PLS) method

Attenuated Total Reflectance (ATR)

- Purpose: Characterization of thermal and chemical properties of pure petroleum diesel and biodiesel blends
- Analytical techniques:
 - FTIR with ATR
 - Evolved gas analysis using TGA-FTIR hyphenation

FTIR with ATR

TGA-FTIR for evolved gas analysis

Reference:

Locally Sustainable Biodiesel Production from Waste Cooking Oil and Grease Using a Deep Eutectic Solvent: Characterization, Thermal Properties, and Blend Performance. Neelam Khan, Sang H. Park, Lorraine Kadima, Carlove Bourdeau, Evelyn Calina, Charles Warren Edmunds, and David P. Pursell. ACS Omega 2021 6 (13), 9204-9212.DOI: 10.1021/acsomega.1c00556

Thermogravimetric analysis (TGA) – Weight loss data

Conclusions

- FTIR Theory
 - Infrared spectroscopy probes the chemistry of the sample
 - The IR spectrum is a chemical finger-print
 - Data can be used for qualitative and quantitative analyses
 - Trade-offs between mid-IR and near-IR
 - Benefits of FTIR
- Applications
 - History of standard methods using IR spectroscopy for analyzing fuels
 - Routine measurements: Quality control and analysis of contaminates
 - R&D applications & Advanced applications

Thank You!

Warren Edmunds

FTIR Applications Scientist

Warren.Edmunds@perkinelmer.com