
Comprehensive Smart Contract
Audit Readiness Guide

Version 2.0
February 28th, 2022

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0

Table of Contents

© OpenZeppelin February 28th, 2022 Website Twitter 01

Table of Contents Preparing for a Smart Contract Audit 02

Understanding Audits 02

Optimal Audit Timing 02

Audit Readiness Checklist 03

1.0 The Team 03

1.1 Harness the Requisite Skills 03

1.2 Establish Effective Development Processes 04

1.3 Manage for Success 05

2.0 The Community 06

2.1 Use a Free Software License 06

2.2 Conduct Community Outreach 06

2.3 Channel Community Input 07

3.0 The Code 08

3.1 Develop Clean, Readable, and Modular Code 08

3.2 Build a Fast, Thorough Test Suite 09

3.3 Write Clean, Comprehensive Documentation 11

What Audit Clients Can Expect 12

Conclusion 13

https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Preparing for a Smart Contract Audit

Preparing for a
Smart Contract
Audit

Understanding Audits

Smart contract audits provide Web3 developers
valuable feedback to address the novel security
challenges of distributed systems. Web3
developers must contend with the extreme
variability of code, as well as the ongoing evolution
of both individual projects and the surrounding
ecosystem. Moreover, accumulating value in smart
contract systems and DAOs (decentralized
autonomous organizations) only makes security
considerations more salient. Audits allow a
project’s developers to demonstrate that their code
has been thoroughly inspected and battle-tested,
thereby fostering trust and encouraging the
project’s adoption by prospective users.

Put simply, a smart contract audit is a methodical
inspection by advanced experts intended to
uncover vulnerabilities and recommend solutions.
Working with the client, an auditor defines the
scope of the audit and systematically probes for
weaknesses in the project’s code. At the
conclusion of the audit, the auditor provides the
client with a report of findings. The client
addresses these findings to strengthen the security
and scalability of the project. Once any identified
vulnerabilities are rectified, the client may choose
to in order to
demonstrate the project’s commitment to security.

make the audit report public

Optimal Audit Timing

Clients that benefit most from an audit do so by
cultivating a dynamic partnership with the audit
team. A good auditor’s skillset goes well beyond
the mere ability to read code and includes the
knowledge and understanding that only come from
extensive hands-on experience in auditing and
smart contract development. Clients should make
use of this expertise, working with the audit team
collaboratively to determine the optimal timing for
an audit.

Obviously, as on-chain security solutions for smart
contracts remain limited, audits are vastly more
useful if they take place before a project is
deployed. At the same time, however, auditors
should not be brought into a project too early.
Audits tend to be most productive—and have the
most interesting and useful findings—for systems
that have achieved a certain level of maturity, i.e.,
code that is tested, documented, and ready for
deployment. For these more mature projects,
audits are a highly effective tool for assessing
smart contract security.

As part of initial discussions to plan an audit
engagement, a prospective client should review
the audit checklist below and discuss the status of
each item with the auditor.

© OpenZeppelin February 28th, 2022 Website Twitter 02

https://blog.openzeppelin.com/security-audits/
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Team

Audit Readiness
Checklist
While there are many aspects to a successful audit

(and a successful project), it can be helpful to think

of audit readiness in terms of three general

categories: (1) The Team, (2) The Community, and

(3) The Code. This checklist is intended to help to

prepare a project for a successful audit and a

promising future.

1.0 The Team

Once a project is solidly established, it will have

hundreds of external contributors. Until that time,

however, it will need a strong and diverse core

group of maintainers. Here are some important

things that any reputable auditor will consider

about a prospective client’s team.

1.1 Harness the Requisite Skills

The team will need people with all the skills and knowledge necessary to successfully implement the full

scope of the project. Team members will need a strong understanding both of the project and any external

dependencies.

Consider:

1.1.1. Does the team have the requisite competencies for the project? In addition to any project-specific

skills, does the team collectively possess the skills listed below?

1.1.1.1. Software Development

1.1.1.2. Understanding of the Blockchain and Smart Contracts

1.1.1.3. DevOps

1.1.1.4. Testing

1.1.1.5. Agile Software Planning

1.1.1.6. Experience with a smart contract language, such as Solidity

1.1.1.7. Experience with Git and GitHub

1.1.1.8. Technical Writing

1.1.2. Are the core team members well-versed with—and, ideally, active participants in—neighboring

communities that will be essential to the project?

A project’s owners should consider how the project’s needs and its team’s skill set overlap. Any gaps should

be identified and rectified.

© OpenZeppelin February 28th, 2022 Website Twitter 03

https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Team

Audit Readiness
Checklist

1.0 The Team

1.2 Establish Effective Development Processes

Every successful team needs a way of working together that structures how it makes progress—and

guarantees that it does. Appropriate project management controls are an essential part of a successful project

and protect against “brain drain” from inevitable turnover.

Consider:

1.2.1. Does the team have an established way to set goals, plan its work, and check on its progress? If so,

how long have these controls been in place and how have they been working?

1.2.2. How would the team assign responsibility for interacting with auditors during an audit?

1.2.3. Do the team’s business processes ensure that all team members are aware of the work other team

members are doing and the issues they are facing? If a team member left the project, would another team

member be able to step in and keep the project moving forward without a steep learning curve?

1.2.4. Is the project’s Git process well organized? Does the team follow

 for branching and pull requests that maintain version control in the code?

specific and established

procedures

A project’s owners should consider the ways in which their team plans work, ensures progress, and hedges

against turnover. If they have not already done so, they should establish business processes that promote

progress and create resiliency.

© OpenZeppelin February 28th, 2022 Website Twitter 04

https://docs.github.com/en/get-started/quickstart/github-flow
https://docs.github.com/en/get-started/quickstart/github-flow
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Team

05

Audit Readiness
Checklist

1.0 The Team

1.3 Manage for Success

The team will require a leader with the skills and temperament necessary to set priorities, manage team

members, and resolve problems and conflicts. This role could be an official Project Manager, but might also

be a Lead Developer, Chief Technology Officer, or anyone who will take responsibility for managing the

project.

Consider:

1.3.1. Does the team have a strong leader with experience leading complex developments?

1.3.2. Does the team’s leader have the judgment necessary to prioritize wisely among competing goods?

1.3.3. Does the team’s leader have the temperament necessary to engage and motivate team members

and other stakeholders?

A project's owners should consider what steps can be taken to enhance the strengths and mitigate the

weaknesses of the team’s leader. by is a good resource on the art and

science of technical management.

The Manager’s Path Camille Fournier

© OpenZeppelin February 28th, 2022 Website Twitter 05

https://www.goodreads.com/book/show/33369254-the-manager-s-path
http://www.camilletalk.com/
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Community

Audit Readiness
Checklist

2.0 The Community

An active and vibrant community is an essential

part of the development, adoption, and evolution

of any project. In a decentralized ecosystem, all

projects build upon and interact with other

projects. Not only is community engagement a

requisite for a project’s adoption, but it is also

essential to its security.

2.1 Use a Free Software License

Smart contract coding without community is inherently insecure. If a web3 project’s prospective users cannot

inspect it, study it, hack it, and experiment on it, they are not going to trust it, either. Closed code makes

users vulnerable to a project’s owners—and to anyone more capable than those owners. When would-be

users have money at stake, closed code is an insurmountable obstacle to project adoption. Transparent and

legally open-sourced code is one of the most important steps in fostering community trust in the project.

Consider:

2.1.1. What free software license works best for the project’s needs?

2.1.2. What battle-tested open-source code might facilitate the needs of the project?

Project owners should review the and ensure that the project is using

that best suits its needs. —the community-vetted standard for smart contract

development—are also an excellent resource; they can be easily imported into a project’s codebase using the

Node Package Manager. (See item 3.1.5.)

Free Software Definition the license

OpenZeppelin Contracts

2.2 Conduct Community Outreach

Whether or not the code is ready to deploy, it is good to consider how a project will attract and inform its

community

Consider:

2.2.1. How will the team market the project?

2.2.2. Who will serve as the project’s community manager? Should this be a new hire?

By considering these issues in advance of deployment, a project’s owners can create buzz around the project

and build its momentum.

© OpenZeppelin February 28th, 2022 Website Twitter 06

https://www.gnu.org/philosophy/free-sw.en.html
https://choosealicense.com/
https://openzeppelin.com/contracts/?utm_campaign=zep-checklist-audits&utm_medium=blog&utm_source=medium
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Community

Audit Readiness
Checklist

2.0 The Community

2.3 Channel Community Input

An audit can build public trust in a project’s code and facilitate its adoption. Community growth will create

both challenges and opportunities.

Consider:

2.3.1. How will the team channel input from the community?

2.3.2. Should the project establish a community and contribution guidelines?code of conduct

2.3.3. Should the project establish a to incentivize its community to look out for

vulnerabilities?

bug bounty program

The project’s owners should consider how the project team would leverage the advantages of an engaged

community. The varied and insightful writings and videos of are a good resource for thinking

about this.

Jono Bacon

© OpenZeppelin February 28th, 2022 Website Twitter 07

https://www.contributor-covenant.org/
https://www.hackerone.com/
https://www.jonobacon.com/
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Code

Audit Readiness
Checklist

3.0 The Code

Obviously, the most critical aspect of audit-

readiness is the code itself. It should be clean,

well-tested, and well-documented. Below are

some important aspects to consider.

3.1 Develop Clean, Readable, and Modular Code

Clean, readable, and modular code is absolutely essential to success. Good code can be understood simply

by reading it. By establishing and following certain rules, developers can promote good, clean code that

draws a community of contributors.

Matters to consider:

3.1.1. Does the code follow reasonable naming conventions? Naming should be as straightforward as

possible. If a project’s naming is not straightforward, it should be explained in a .glossary

3.1.2. Is the code’s style consistent throughout the codebase? It should be. It is a good idea to follow

, but at the very least a project’s style should be somewhere. Moreover,

developers should consider running a on every new line of code.

Solidity’s style guide documented

linter

3.1.3. Is the code modular? Ideally, code should be in short and straightforward segments. If functionality is

split into multiple modules (such as libraries or other contracts), it should be well encapsulated and the

codebase should be navigable without too much jumping around.

3.1.4. Are various operations organized similarly? For both security and readability, it is a good idea to follow

similar steps in operations performed. Code should follow the convention.

Moreover, is a recommended practice.

Checks-Effects-Interactions

failing early and loudly

3.1.5. When the project imports external dependencies and libraries, does it do so in a clear, obvious, and

well-documented way? When using industry-standard libraries and interfaces, it is always best to import

these directly whenever possible, using tools such as the), rather than

copying and pasting.

Node Package Manager (NPM

© OpenZeppelin February 28th, 2022 Website Twitter 08

https://docs.makerdao.com/other-documentation/system-glossary
https://docs.soliditylang.org/en/latest/style-guide.html
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/GUIDELINES.md#style-guidelines
https://en.wikipedia.org/wiki/Lint_%28software%29
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://oncodingstyle.blogspot.com/2008/10/fail-early-fail-loudly.html
https://www.npmjs.com/package/@openzeppelin/contracts
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Code

Audit Readiness
Checklist

3.0 The Code

3.2 Build a Fast, Thorough Test Suite

The soundness of a project’s code has a direct relationship with the security of the money involved. For this

reason, testing is an essential component of secure development, and project developers should conduct unit

tests for all—or nearly all—of a project’s code. Failing to test code may be leaving the door open to a costly

exploit.

Developers should follow a process of test-driven development, which uses short Agile development cycles to

minimize the number and impact of assumptions. The approach is a recommended best

practice. Developers should begin by testing at the unit level, then working their way up to testing at the level

of a user, and finally to testing at the level of interactions with other systems.

Reviewing a project’s test suite helps an auditor understand the intent behind a project’s code, thereby

assisting in successful auditing. It should come as no surprise that auditors frequently find code vulnerabilities

by calling exposed functions that are absent from the test suite. For this reason, the existence of a

comprehensive test suite is a good proxy for the overall quality of a project, and auditors consider this factor

when assessing a project’s audit-readiness.

Developers should construct a readable, well-structured, and fast test suite. Matters to consider include:

Red-Green-Refactor

3.2.1. Are all tests executable and successful? Developers should ensure that the test suite and its

dependencies are up to date, such that all tests execute and pass on a fresh installation

3.2.2. Does the test suite test for edge cases? Developers should keep in mind that malicious actors often

succeed in attacking code by considering ways it is not intended to be run.

© OpenZeppelin February 28th, 2022 Website Twitter 09

https://www.codecademy.com/article/tdd-red-green-refactor
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Code

Audit Readiness
Checklist

3.0 The Code

3.2.3. Does the test suite test against local forks? Developers integrating with multiple projects should run a

set of integration tests against local forks of mainnet. Leveraging can be

a useful approach to testing edge cases. However, developers should note this approach may require more

set up and wiring, demanding stronger maintenance efforts. To mitigate, projects should consider a limited set

of smoke tests before deployment against a local fork of mainnet.

forking capabilities of existing tools

3.2.4. Does the test suite cover at least 90 percent of the code? While high coverage does not guarantee

that the test suite can detect all vulnerabilities, it does indicate that an appropriate level of effort is being

devoted to testing.

3.2.5. Does the test suite include helpers? Developers should spend time building and using

. These make their tests more legible and easier to write.

helpers and

utilities

3.2.6. Does the test suite include more advanced tests? For more advanced projects, developers may

incorporate a range of more advanced testing tools to achieve a greater degree of confidence in their code’s

correctness. Such tools may include those for and . These advanced testing

approaches are becoming increasingly common.

fuzzing property based testing

3.2.7. Does the test suite meet well-known standards? Developers should strive to meet generally accepted

testing standards, such as the Smart Contract Security Verification Standards (SVSCS) for G12: Test

Coverage.

There are a number of helpful test suite resources. For a short overview, consult

 by Kent Beck. In developing a comprehensive test suite, developers may find that some scenarios

are difficult to test; for these situations, it can be valuable to refer to Gerard Meszaros’s .

Of course, there is often value in following the examples of others; developers should review

 shared by others in the ecosystem.

Test Driven Development: By

Example

xUnit Test Patterns

testing

guidelines

© OpenZeppelin February 28th, 2022 Website Twitter 10

https://hardhat.org/guides/mainnet-forking.html
https://github.com/OpenZeppelin/openzeppelin-test-helpers
https://github.com/OpenZeppelin/openzeppelin-test-helpers
https://github.com/crytic/echidna
https://github.com/dapphub/dapptools/tree/master/src/dapp#property-based-testing
https://github.com/securing/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x112-G12-Test-Coverage.md
https://github.com/securing/SCSVS/blob/prerelease/SCSVSv2/2.0/0x100-General/0x112-G12-Test-Coverage.md
https://www.goodreads.com/book/show/387190.Test_Driven_Development
https://www.goodreads.com/book/show/387190.Test_Driven_Development
https://www.goodreads.com/book/show/337302.xUnit_Test_Patterns
https://github.com/MolochVentures/moloch/tree/master/test
https://github.com/MolochVentures/moloch/tree/master/test
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Code

Audit Readiness
Checklist

3.0 The Code

3.3 Write Clean, Comprehensive Documentation

While it may not be any developer’s favorite part of a project, good documentation is essential to success—

and it is the first place auditors will look to understand a project’s purpose, features, and inner workings.

Project documentation should be clear, comprehensive, and up-to-date. Specifically, auditors will consider:

3.3.1. Does the documentation achieve all of the following objectives:

3.3.1.1. Does it tell users, contributors, and auditors the intention behind the project?

3.3.1.2. Does it provide detailed explanations of what the code is doing—as well as statements of what

it is not doing in any place where omitting such information might cause confusion?

3.3.1.3. Whenever applicable, does it explain why one way of achieving a particular aim was chosen

over another way?

3.3.1.4. Whenever applicable, does it make explicit any assumptions made by the developers?

3.3.2. Does the project have a Readme file? A Readme should serve as a straightforward index of its project.

It should follow the simple and effective style. It should also include a specific section that

states how members of the community should disclose any security vulnerabilities found in the project.

Standard Readme

3.3.3. Does the code have rich documentation in every contract, function, event, and variable that

documents every function included in the public API? While it is tempting to think that clearly written code

does not require documentation, the fact is that protocols for decentralized applications will be called by a

wide variety of external agents. For this reason, good docstrings are important. They should follow the

. If functions are private/internal, but implement sensitive logic, they should be documented

as well.

NatSpec format

3.3.4. Does the project have inline comments? In addition to NatSpec, it is a good idea to have inline

comments to explain complex functionality and the current status of certain sections of code. It is also

important to check for “TODOs” and ensure that they are resolved prior to an audit or large release.

© OpenZeppelin February 28th, 2022 Website Twitter 11

https://github.com/RichardLitt/standard-readme
https://docs.soliditylang.org/en/latest/natspec-format.html
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - The Code

Audit Readiness
Checklist

3.0 The Code

3.3.5. Does the project have to parse and generate external documentation based on the

contracts’ inline documentation? Updating documentation for protocols that regularly change can be time-

consuming. It is always a good idea to make documentation changes part of an automated deployment

pipeline, so that when code documentation changes, public-facing documentation is automatically updated

as well.

automated tools

3.3.6. Is there external documentation on the project’s website? Such documentation might include more

expansive discussion of the project’s system architecture, economic incentives, roles, and other relevant

design considerations.

3.3.7. Is there documentation on the deployment process for on-chain code changes? For smart contract

protocols that make on-chain upgrades, a clear deployment process is essential. (This is true whether

upgrades are initiated from a privileged account or a DAO.) The deployment process can have implications for

both the security and the functionality of the code. are a great resource to

help manage upgradeable contracts on Ethereum.

OpenZeppellin Upgrades Plugins

What Audit Clients
Can Expect

 Client and audit team agree on audit terms and timin

 Client reviews and executes the audit readiness checklis

 Audit team reviews final version of code prior to commencing audit to ensure the code is ready and fits

agreed upon timelin

 Audit team conducts audi

 Audit team provides report of finding

 Client fixes any issues identifie

 Audit team reviews fixes, if requested

 Client and audit team publish audit report, if requested

© OpenZeppelin February 28th, 2022 Website Twitter 12

https://github.com/OpenZeppelin/solidity-docgen
https://docs.openzeppelin.com/upgrades-plugins/1.x/
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

Ship faster with the security of
OpenZeppelin Defender

Automate smart contract operations to

deliver high-quality products with lower

risk.

Sign up free

Real-time threat detection for
smart contracts

Get real-time alerts on cybersecurity,

financial, governance, and operational

threats. A project incubated by the team

at OpenZeppelin.

learn more

Smart Contract Security
Advisory Services

Work with a Security Advisor on strategic

matters related to smart contracts

security.

get in touch

Comprehensive Smart Contract Audit
Readiness Guide - V.2.0 Audit Readiness Checklist - Conclusion

13

Conclusion A smart contract audit is a valuable tool in helping Web3 developers to secure their code, but—

unlike formal verification or vulnerability testing—an audit is about more than just the code itself. It is

about building the trust necessary to attract and engage a thriving community that is willing to invest

its time and resources into a project. Fostering such a community requires thoughtful planning and

disciplined execution in all aspects of the project, and the checklist above is intended to assist

project owners in being comprehensive in their preparations for an audit. A good audit team will

discuss each item on the checklist, and more, with a prospective client in order to gauge that client’s

level of audit-readiness.

Prospective clients who wish to engage OpenZeppelin’s team of smart contract experts should fill

out the form . The OpenZeppelin team will review the code submitted and provide a quote and

timeline. In the meantime, other OpenZeppelin tools and action items on this checklist will help

developers improve a project’s code and security posture.

here

© OpenZeppelin February 28th, 2022 Website Twitter 13

https://openzeppelin.com/defender/
http://Explorer.forta.network
https://share.hsforms.com/1wW_qwslnRoaR_8pc1THVSQ4n2uq
https://openzeppelin.com/request/
https://openzeppelin.com/
https://twitter.com/openzeppelin?s=21

