

#### Transformer Fleet Management

Asset Health Review Process

Asim Bashir Bajwa Manager Technical Services Doble Powertest Ltd. UK



ALTANOVA, a Doble Engineering Company, provides diagnostic solutions to utilities and industries to improve the performance of their electrical assets through portable testing equipment, advanced monitoring systems, and professional services.

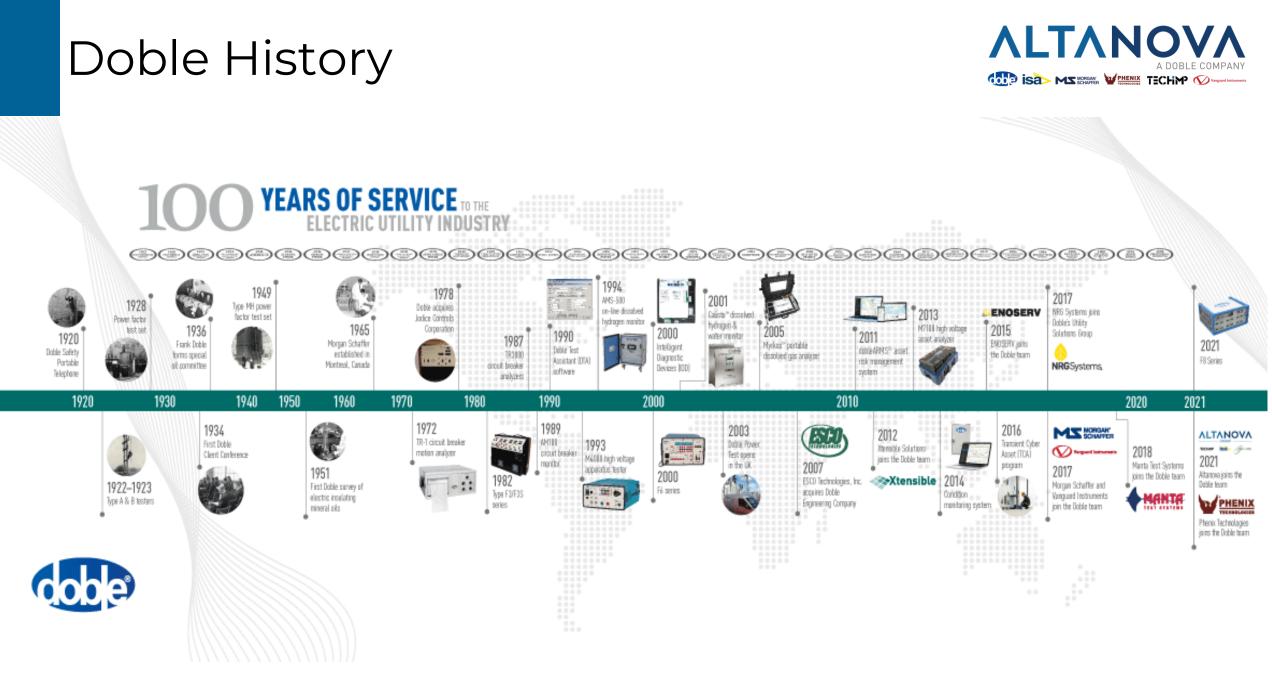


#### Altanova History



I.S.A. Istrumentazioni Sistemi Automatici S.r.l. is established in Taino ITALY

1999 TECHIMP was born as a spin-off from the University of Bologna ITALY.


- 1.S.A. and TECHIMP merge giving birth to the ALTANOVA GROUP
- 2019 INTELLISAW joins ALTANOVA GROUP

2021

1938

ALTANOVA GROUP becomes part of ESCO Technology Group and joins the Doble Engineering Company, as part of the USG division.





#### Altanova Today













5550+ CUSTOMERS GLOBALLY



PRODUCT BRANDS

# Our Solutions

#### **Electrical Test Equipment**

Essential for day-to-day maintenance tests of electrical assets. Useful in specific phases of the asset lifecycle:

- Procure
- Operate
- Maintain
- Decommission.

#### **Professional Services**

Diversified offer according to the electrical asset lifecycle:

- Installation and commissioning
- Diagnostic test
- Data analysis
- Consultancy
- Training.





#### Monitoring Systems

Shift from a time-based maintenance to a condition-based maintenance.

Focus on predictive maintenance and shift in focus from electric asset value cost to network outage costs.

Strong evolution of digitalization trend in the power industry.

#### Power transformers Current & voltage transformers **Circuit breakers** Protective relays HV gas insulated switchgears Meters and transducers MV/HV/EHV cables Rotating machines MV/LV switchgears Variable speed drives **Overhead** lines Batteries







#### Transformer Fleet Management Asset Health Review Process

Asim Bashir Bajwa Manager Technical Services Doble Powertest Ltd. UK

©2022 Altanova Group. All Rights Reserved.

## Outline



- Importance of Fleet Management
- Purpose of Asset Health Review
- Methodology
- Process
- Case Studies
- Conclusion



# Application of AHI



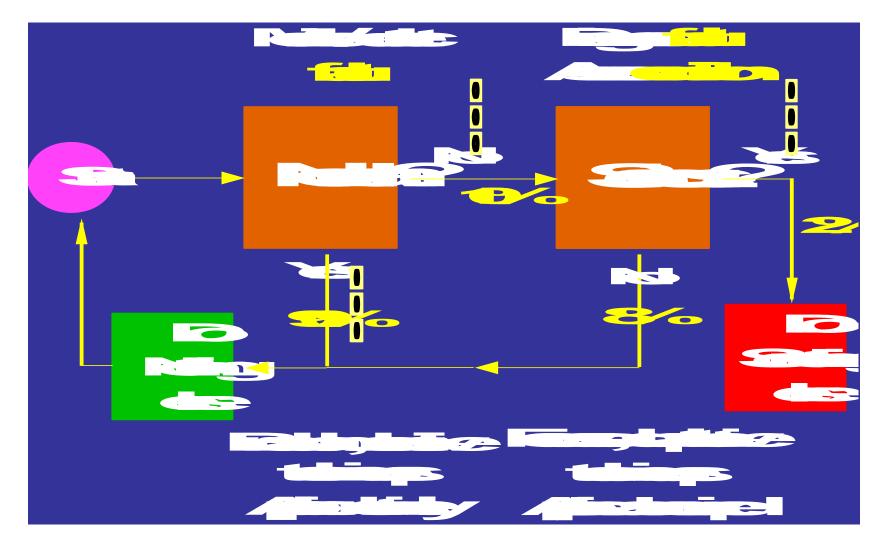
A previously state-owned utility after privatization

- Slowly ageing population to manage
- Increased pressure to get best value
- An improved asset management plan (AHR) was developed in response
- A large independent US power producer
  - 87 power plants total installed capacity of 27GW
  - ~800 transformers (>250 GSU)
  - 2 generator transformer failures
  - "We didn't know the overall health of our critical transformers"
  - Implemented AHR: oil and electrical test results, IR scans, highlight inconsistent and missing results

Large National T&D operator in Middle East

- 4 operating regions
- One region significantly higher failure rates
- Implemented AHR/CBM

#### Purpose of AHI System




The purpose of the Asset Health Indexing is as follows:

- Consolidate information in one place
- Assess transformer condition and performance
- Identify risks and opportunities
- Identify transformers requiring replacement in short-medium term
- Estimate long-term replacement volumes
- Trend evolution in transformer condition and replacement volumes
- Industry and insurance compliance
- Generate timely reports for management
- Is it Life Extension ?

#### **Condition Based Methodology**

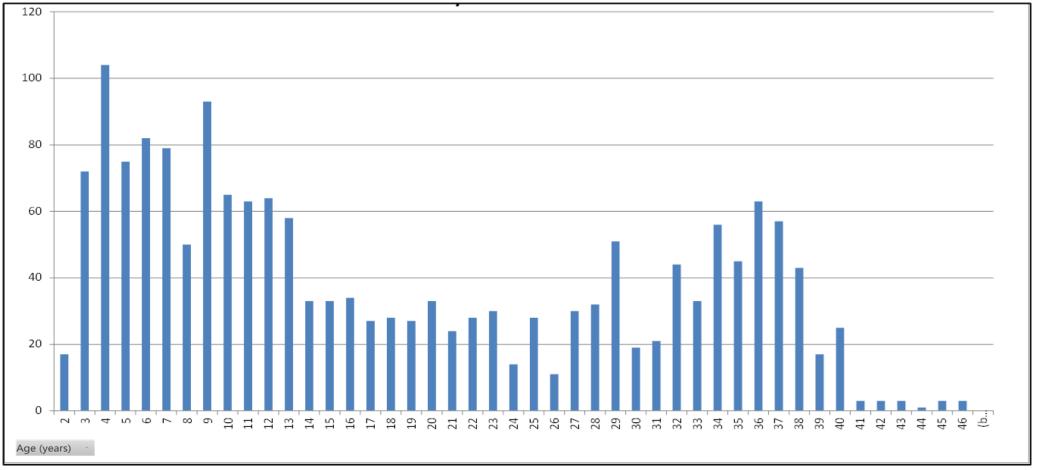








The process includes the following key elements:


- 1. Initial review based on existing information
- 2. Second review based on offline / online tests
- 3. Assess technical condition to generate additional data for decision making
- 4. Assessment of designs from forensics
- 5. Risk management indexing based on risk and severity

# 1 – Initial Review



- Initial review is based on available data only. Quality of output depends on quality of input (such as poor oil sampling data), and therefore on quality of available data (FAT, commissioning results, lab data). Often based only on design assessment and oil test results.
- Try to assess different aspect condition of transformer, esp. *dielectric, thermal, and mechanical condition*. May include other elements, e.g. accessories or external corrosion. Convert assessment to score.
- Operational history: Service life, Loading, knowledge of maintenance done, repairs
- Event history: Faults, system events
- Monitoring data: DGA, electrical test data

#### 1 – Initial Review



Transformer Fleet Review (age wise) 1800 units

**ΛLTΛΝΟVΛ** 

### 1 – Initial Review



Typical scoring scheme:

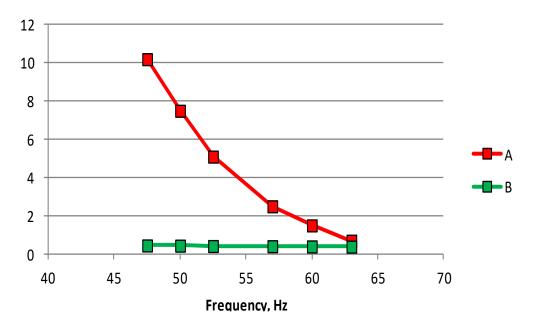
- 1 Excellent no known problems
- 2 Good Minor problems only, may get worse...
- 3 Moderate Likely evidence of problem requiring attention within 5-10 years.
- 4 Strong or likely evidence of serious problem requiring attention within 2-5 years.
- 5 Strong evidence of serious problem requiring attention within
  1-2 years

# 2 – Second Review



- Second review involves gathering additional data, either to cover gaps in the available information for the initial review or to get more information about priority transformers.
- Transformers may be priority owing to condition, importance, a combination of the two, or other reasons.
- Use wide range of on-line condition assessment methods, e.g. visual inspection, IR scan, RFI survey, and especially oil tests.
- Use wide range of off-line condition assessment methods, e.g. winding capacitance and power factor, winding frequency response, and winding resistance.

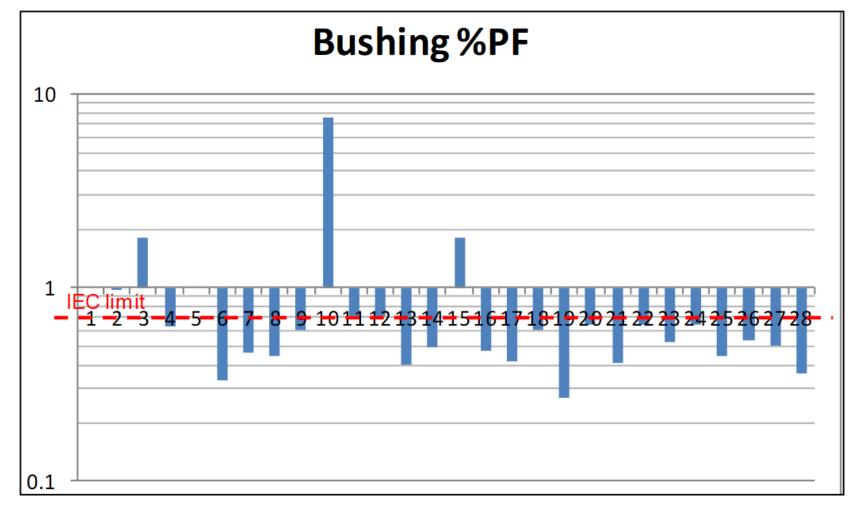
#### ©2022 Altanova Group. All Rights Reserved


#### 2 – Second Review

#### • 2-winding, 132/33 kV, 90 MVA, ONAN/ONAF, YNd11, 1964 UK OEM

• Online PD survey picked up discharge activity in the transformers

#### **HV BUSHING CAP. & POWER FACTORS** kV A phase B phase C phase 2 130 pF 130 pF 135 pF 5 133 pF 133 pF 137 pF 5.3 % 5.3 % 5.3 % 10 133 pF 134 pF 151 pF 4.4 % 4.3 % 3.5 % 12 129 pF 129 pF 146 pF 10.5 % 5.8% 7.5 %


CURVE A: B PHASE BUSHING OF A2T (Tested Bushing with High PF) CURVE B: B PHASE BUSHING OF A1T (Reference)





#### 2 – Second Review



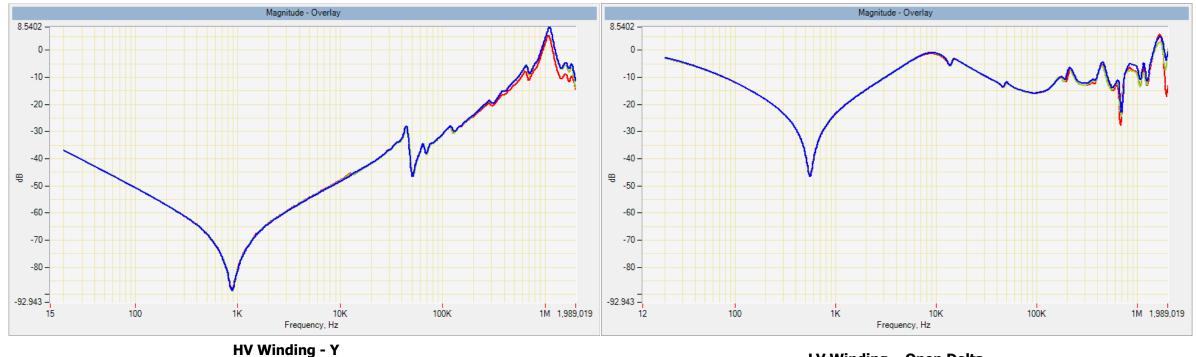


Bushing Contribution in Fault Development

# 3 – Assess Technical Condition



- Arrange a technical condition assessment for priority transformers using outcome of first review, and second review, and design assessments. May be able to extend to remainder of population by analogy/extension.
- Often used to determine need for refurbishment or replacement. May also be used to assess suitability for redeployment or change of use.
- Occasionally used to determine requirement for spare transformers.

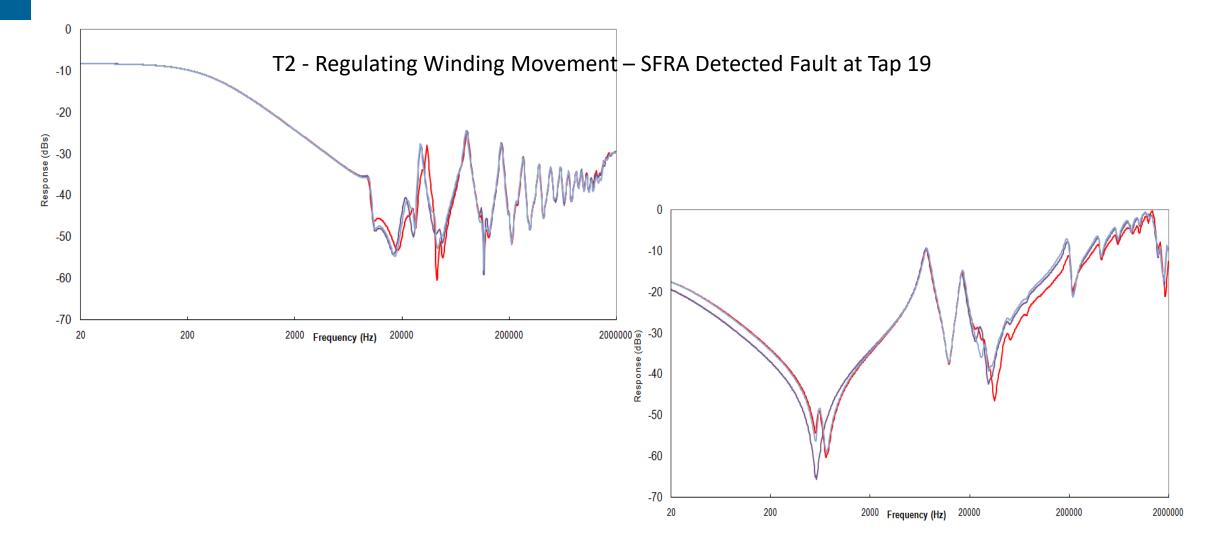

#### Case Study – 1



- It is about Selector Flash Over and Tapchanger (Partial) Damage during service, transformers T1 & T2, 400kV, 800MVA, YNd1, 2-winding units, manufactured in 1960s in England
- Reasons for Fault Investigation:
  - Transformer **T1** & **T2** were tested for fault finding in OLTC. <u>Electrical</u> <u>Testing</u> and DGA carried out to investigate the cause
- Conclusion:
- Transformer **T1** marked for Regular Oil Analysis / RFI Survey / Offline test in 3 yrs
- Transformer T2 was unreliable for further service and scrapped

#### Case Study – 1






LV Winding – Open Delta

#### T1 with no signs of winding movement (HV & LV winding)

Case Study – 1





#### Case Study – 1



• Forensic Analysis confirmed winding movement



# 4 – Design Assessment



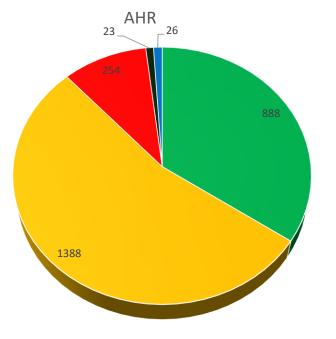
- Not the same as design review, although design review data may be useful. Info from nameplate is useful (kV, MVA, %Z, OEM, Year etc.)
- Involves assessing how different designs perform in service, e.g. rate of solid insulation ageing, short-circuit withstand capability, thermal problems developing in service.
- Often involves feedback from transformer forensics, which is often more helpful for assessing how design perform in service. And good for determining actual causes of failure. Also good for investigating solid insulation ageing.
- CIGRE brochure 529 WG A2.36 (Guidelines for Conducting Design Reviews for Power Transformers)

#### 4 – Design Assessment (from forensics)







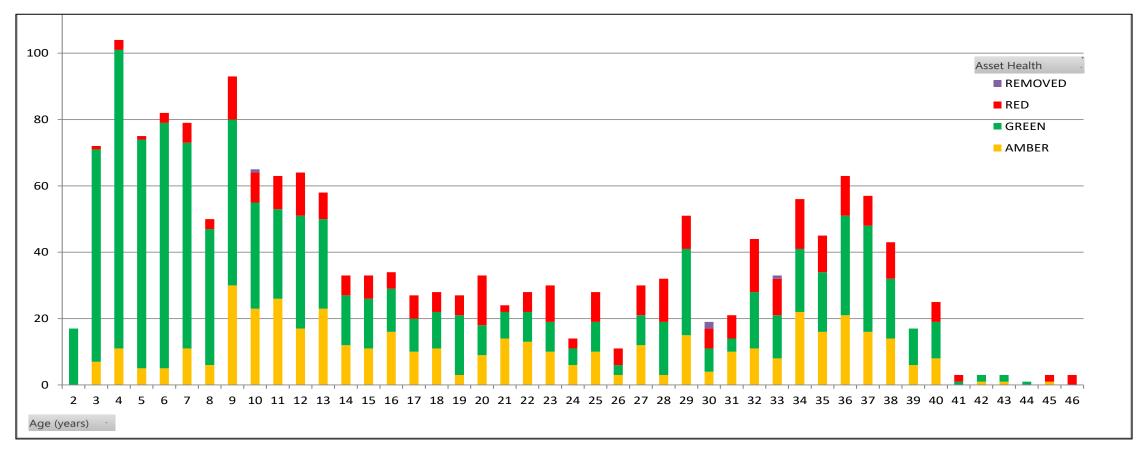







## 5 – Risk Management

- Risk of failure low/medium/high
- Safe Access for continued (enhanced) monitoring
- Continuous Online & Offline surveys/condition monitoring
- Decision to change the category level based on available information
- Plan for Replacement(s)




Transformers Profiling w.r.t. Condition



#### 5 – Risk Management





Transformers Profiling w.r.t. Service Life

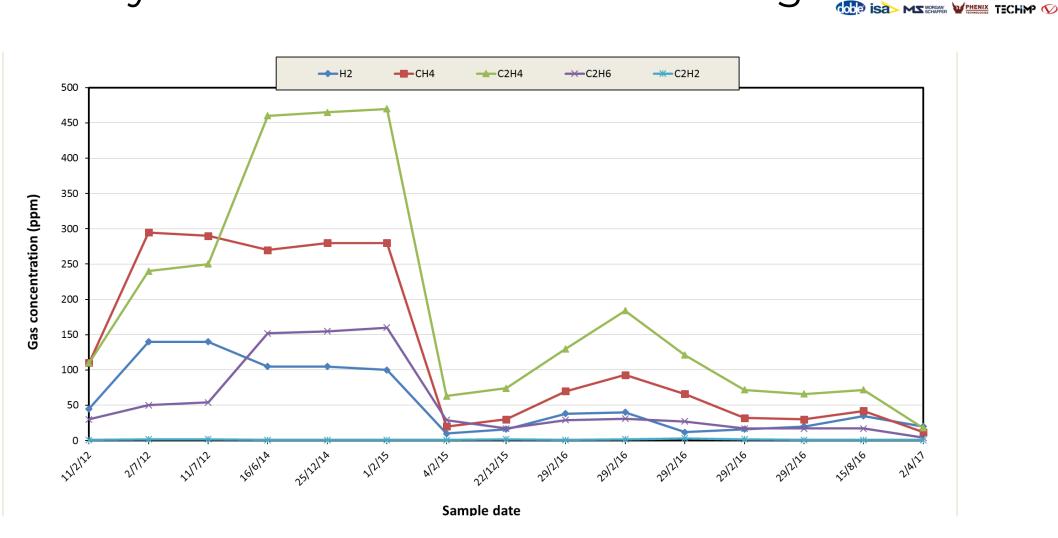
#### Outcome



| EXECUTIVE SUMMARY SHEET<br>ASSET HEALTH REVIEW |                       |       |                                         |     |       |         |      |  |  |  |
|------------------------------------------------|-----------------------|-------|-----------------------------------------|-----|-------|---------|------|--|--|--|
| Transformer Numbers                            | No. of Units Analysed |       | Individual Trf AHR Reports<br>Completed |     |       |         |      |  |  |  |
|                                                |                       | GREEN | AMBER                                   | RED | BLACK | REMOVED |      |  |  |  |
| North                                          | 940                   | 189   | 615                                     | 133 | 0     | 3       | 919  |  |  |  |
| East                                           | 876                   | 279   | 464                                     | 92  | 23    | 20      | 875  |  |  |  |
| West                                           | 251                   | 87    | 149                                     | 12  | 0     | 3       | 244  |  |  |  |
| South                                          | 510                   | 333   | 160                                     | 17  | 0     | 0       | 510  |  |  |  |
| GRAND TOTAL                                    | 2577                  | 888   | 1388                                    | 254 | 23    | 26      | 2548 |  |  |  |

Asset Health categories

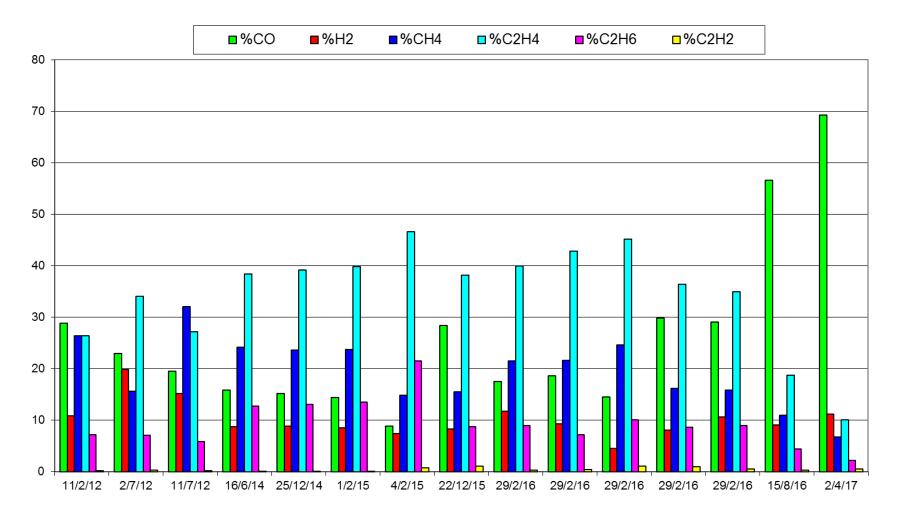
#### Outcome




League table for transmission operator – sorted by worst overall condition score

| Design/Manufacturer                      | Current and Mitigated<br>Condition |     |                   | Possible<br>improvement |            | Component score based<br>on sub-components |           |          |               |        |          |
|------------------------------------------|------------------------------------|-----|-------------------|-------------------------|------------|--------------------------------------------|-----------|----------|---------------|--------|----------|
|                                          |                                    |     | $\backslash$      | in score*               |            |                                            | ~         |          |               |        |          |
|                                          |                                    |     | 7                 |                         |            | $\swarrow$                                 |           |          | $\rightarrow$ |        |          |
|                                          |                                    |     | Overall Condition | on 🖌                    | Core       | e and Windings                             |           | Oi       | I             | OLTC E | Exterior |
| T-N Ratio Rated P Manufact Design        | 🔹 sign 💌 Year 💽                    | Now | 🚽 Mitigated 💌     | Possible Ir 🚬           | Dielectric | Thermal Me                                 | echanic 🗾 | Ageing 🗾 | Contamina 🔼   | -      | -        |
| T4315 400/132 kV 240 MVA AEI Wythen A04a | 32 1965                            | 221 | 213               | 8                       | 100        | 100                                        | 1         | 13       | 10            | 3      | 10       |
| T3040 275/132 kV 120 MVA EEC E11b        | <b>32</b> 1959                     | 170 | 103               | 68                      | 30         | 60                                         | 1         | 190      | 10            | 10     | 10       |
| T6975 400/275 kV 1000 MVA GEC G02b       | <u>104</u> 1994                    | 170 | 135               | 35                      | 30         | 60                                         |           | 36       | 100           |        | 1        |
| T3039 275/132 kV 120 MVA EEC E11b        | 32 1959                            | 154 | 143               | 11                      | 30         | 100                                        | 1_        | 23       | 10            | 10     | 3        |
| T4259 275/66 kV 180 MVA CP D07           | 12 1965                            | 152 | 126               | 26                      | 60         | 60                                         | 1         | 70       | 10            | 1      |          |
| T2370 275/132 kV 120 MVA MVE M01         | <u>5</u> 1957                      | 151 | 94                | 57                      | 30         | 60                                         | 1         | 160      | 10            | 3      | 10       |
| T5961 400/275 kV 750 MVA HHE H02         | 111 1971                           | 147 | 100               | 47                      | 3          | 60                                         |           | 140      |               |        | 3        |
| T6201 275/33 kV 100 MVA PPT P21          | 104 1972                           | 144 | 139               | 5                       | 1          | 3                                          | 100       | 13       |               | 1      | 10       |
| T5566 400/132 kV 240 MVA CAP C04         | 32 1968                            | 138 | 85                | 54                      | 10         | 60                                         | 1         | 140      | 30            | 1      |          |
| T4409 275/132 kV 240 MVA HHE H07a        | 12 1964                            | 133 | 107               | 26                      | 1          | 100                                        | 1         | 70       | 10            | 3      |          |
| T5581 400/132 kV 240 MVA AEI Wythen A04b | 102 1967                           | 132 | 106               | 26                      | 10         | 60                                         | 1         | 70       | 10            | 3      |          |
| T4686 400/132 kV 220 MVA PPT P06a        | <b>131</b> 1967                    | 131 | 107               | 24                      | 1          | 60                                         | 1         | 63       | 10            | 1      | 10       |
| T4406 275/132 kV 240 MVA HHE H07a        | <u>12</u> 1964                     | 129 | 106               | 23                      | 1          | 100                                        |           | 63       | 10            | 1      |          |
| T2300 275/132 kV 120 MVA EEC E11a        | <u>102</u> 1955                    | 129 | 105               | 24                      | 10         | 60                                         | 1         | 70       |               | 1      | 10       |
| T4258 275/132 kV 240 MVA HHE H07a        | 12 1966                            | 129 | 106               | 23                      | 1          | 100                                        |           | 63       | 10            | 1      |          |
| T3041 275/132 kV 120 MVA EEC E11b        | 32 1959                            | 129 | 107               | 22                      | 30         | <b>60</b>                                  | 3         | 43       | 30            | 10     |          |
| T2521 275/132 kV 120 MVA FER F08         | <b>120</b> 1956                    | 124 | 105               | 19                      | 3          | 60                                         | 1         | 50       | 10            | 1      |          |
| T3583 275/132 kV 180 MVA FUL L05         | 111 1962                           | 122 | 99                | 23                      | 1          | 60                                         |           | 63       | 10            | 1      |          |
| T5434 400/132 kV 240 MVA AEI Wythen A04b | 102 1967                           | 122 | 96                | 26                      | 1          | 60                                         |           | 70       | 10            | 3      |          |
| T3139 275/66 kV 120 MVA AEI Rugby A10    | <b>3</b> 1960                      | 122 | 106               | 16                      | 100        | 3                                          | 1         | 40       | 10            | 1      |          |

\*some categories are irreversible or cannot be improved, such as aged solid insulation etc.


#### Case Study – 2 Transformer Core Earthing



DGA gas levels of large transmission unit 2-winding, 220kV, 3-phase

ΛLΤΛΝ

#### Case Study – 2 Transformer Core Earthing



DGA gas signature of large transmission unit 2-winding, 220kV, 3-phase

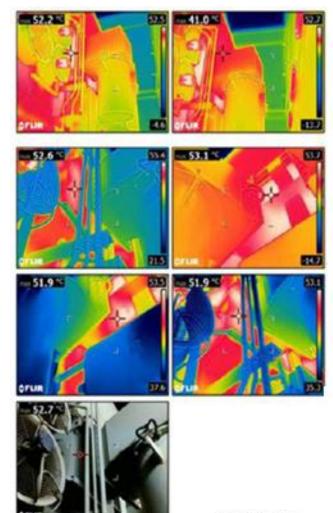
**VI TV N** 

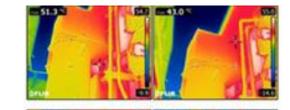
# Case Study – 2 Transformer Core Earthing



(courtesy of Rick Youngblood – Doble Engineering)

Core-Frame Inspection and Resistor Installation (Aug 2016)


#### Case study – 3 380kV Cable Boxes Failure in Service

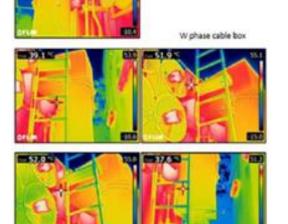





#### Case Study – 3 Lessons Learned from Failure








V phase cable box

V phase cable box

52.7 %

V phase cable box



W phase cable box

U phase cable box

U phase cable box



Neutral phase cable box

V phase cable box

Sister Tx Cable Boxes IR scans revealed hotspots

#### Case Study – 3 Lessons learned from Failure





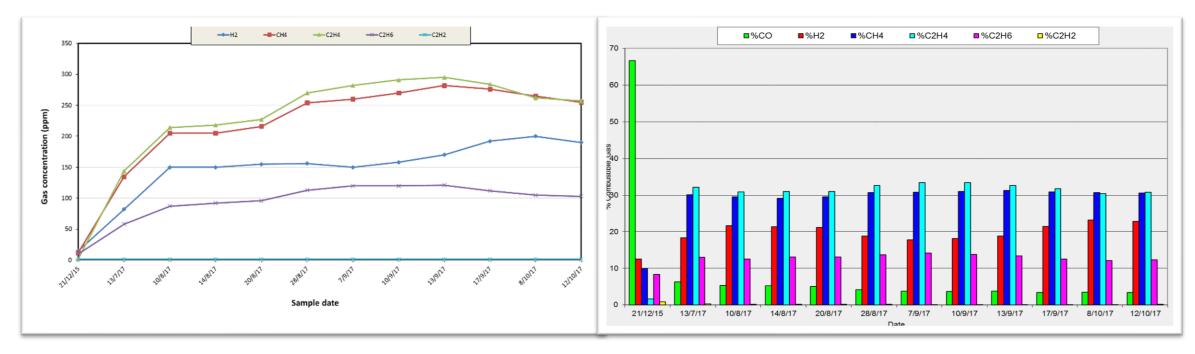
N phase – heat decolourisation markings of corona shield with some pitting

N phase – Heat decolourisation markings of corona shield with some pitting. Brittle paper pieces seen plus paper has voids from incorrect laying.

Sister Tx Cable boxes were inspected

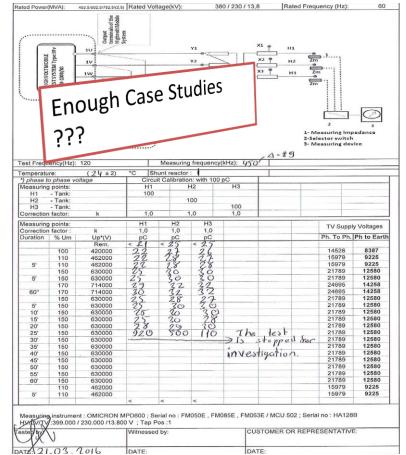
Signs on pitting on corona shield

Case Study 4 – 2FAL Criteria




| EQ.ID | Preserv.     | Man Year | MVA  | CO (2013-17)<br>ppm | 2FAL | Est DP | %age Life | est. life yrs. |
|-------|--------------|----------|------|---------------------|------|--------|-----------|----------------|
| TR01A | Gel Breather | 1982     | 40   | 319                 | 9.74 | 146    | 0         | 0              |
| TR04A | Gel Breather | 1981     | 40   | 283                 | 8.66 | 161    | 0         | 0              |
| TR02A | Gel Breather | 1982     | 40   | 551                 | 7.78 | 174    | 0         | 0              |
| TR02B | Gel Breather | 1981     | 46   | 646                 | 5    | 228    | 10        | 3.5            |
| TR02C | Gel Breather | 1981     | 40   | 1002                | 4.96 | 230    | 11        | 3.85           |
| TR01B | Gel Breather | 1981     | 40   | 1116                | 4.46 | 243    | 14        | 4.9            |
| TR01C | Gel Breather | 1982     | 40   | 616                 | 4.33 | 247    | 16        | 5.44           |
| TR02D | Gel Breather | 1982     | 40   | 696                 | 3.55 | 272    | 23        | 7.82           |
| TR01D | Gel Breather | 1982     | 40   | 364                 | 2.38 | 321    | 34        | 11.56          |
| TR03A | Gel Breather | 1968     | 31.5 | 423                 | 1.34 | 393    | 49        | 23.52          |
| TR03B | Gel Breather | 1968     | 31.5 | 472                 | 1.25 | 401    | 51        | 24.48          |

## Case Study – 5




- A 380kV, autotransformer, believed to be failed due to Partial Discharges
- DGA results confirmed the myth
- Back energization confirmed PD in the sister unit



#### Case Study – 5





Back Energisation PD test of sister tx



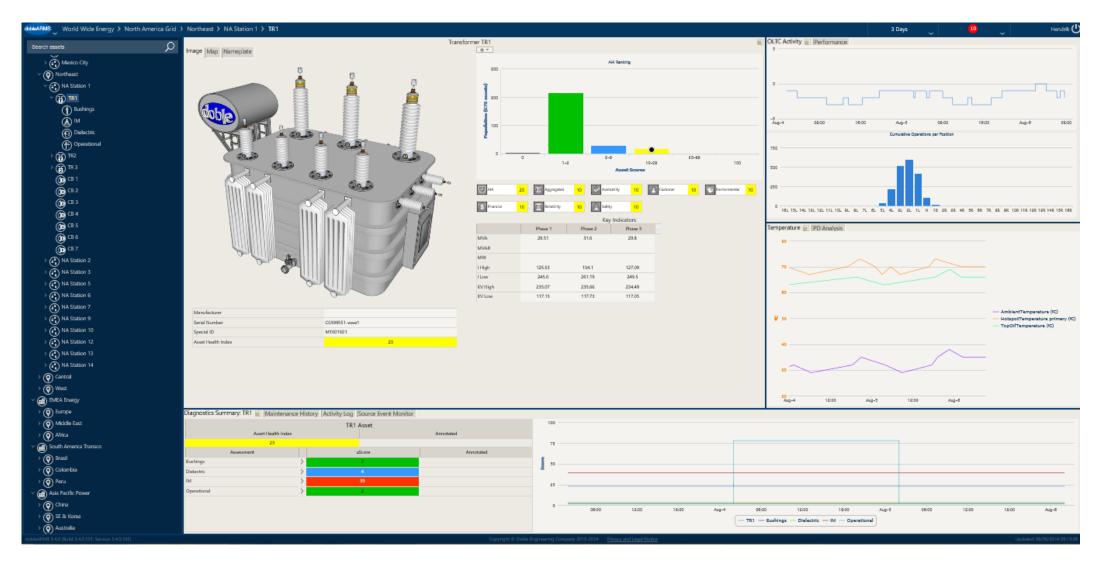
Sister tx damaged insulation causing PD (design issue) – leads out 1 & 3 (before & after repair)

## AHR Summary Code Sheet

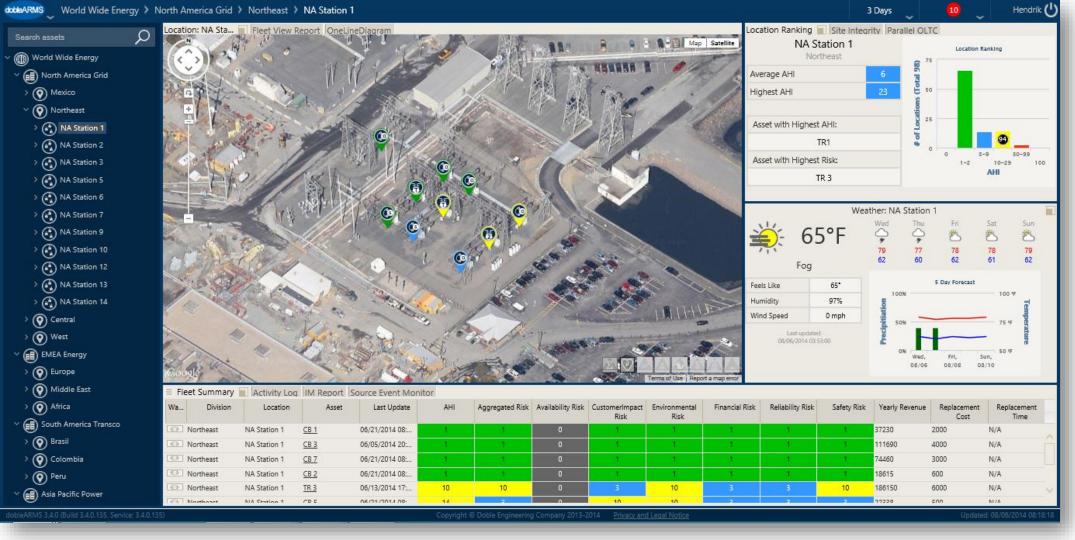


| Substation | Overall<br>Transformer<br>Code | Oil Code | Code | Mechanical<br>Code | Most Recent<br>Sample date<br>Oil | DGA Code | Paper Aging<br>Code<br>(FAL and CO | Oil Quality<br>Code | Code | Corrosive<br>Sulfur Code | Most Recent<br>Electrical<br>Test Dat | Overall<br>Power<br>Factor Co | Overall<br>Capacitance<br>Code | Bushing<br>Code | Winding<br>Insulation<br>Resistance<br>Code | Core<br>Insulation<br>Resistance<br>Code | Winding<br>Resistance<br>Code |
|------------|--------------------------------|----------|------|--------------------|-----------------------------------|----------|------------------------------------|---------------------|------|--------------------------|---------------------------------------|-------------------------------|--------------------------------|-----------------|---------------------------------------------|------------------------------------------|-------------------------------|
| В          | 4                              | 4        | 5    | 5                  | 9/22/15                           | 5        | 3                                  | 4                   | 4    | 0                        | 2014                                  | 5                             | 5                              | 0               | 5                                           | 0                                        | 0                             |
| с          | 1                              | 1        | 3    | 5                  | 9/22/15                           | 1        | 4                                  | 4                   | 4    | 0                        | 2014                                  | 3                             | 5                              | 0MP             | 5                                           | 0MP                                      | 0                             |
| D          | 4                              | 4        | 5    | 5                  | 11/13/2015                        | 4        | 4                                  | 4                   | 3    | 0                        | 2015                                  | 5                             | 5                              | 0               | 5                                           | 0                                        | 0                             |
| E          | 3                              | 3        | 3    | 3                  | 9/22/2015                         | 4        | 3                                  | 4                   | 3    | 0                        | 2015                                  | 3                             | 3                              | 0               | 5                                           | 0                                        | 0                             |
| F          | 4                              | 4        | 5    | 5                  | 9/22/2015                         | 4        | 4                                  | 4                   | 3    | 0                        | 2014                                  | 5                             | 5                              | 0               | 5                                           | 0                                        | 0                             |
| G          | 2                              | 2        | 3    | 5                  | 5/26/2016                         | 4        | 3                                  | 2                   | 3    | 0                        | 2014                                  | 5                             | 5                              | 3               | 5                                           | 0                                        | 5                             |
| н          | 3                              | 3        | 5    | 5                  | 3/25/2015                         | 3        | 3                                  | 4                   | 4    | 0                        | 2014                                  | 5                             | 5                              | 5               | 5                                           | 0                                        | 5                             |

Easy to group and prioritize Drill down to sectional codes Gap analysis data needed


## Fleet Activity Report

| ΛL       | .ΤΛΝ | ΙΟΛΥ            |
|----------|------|-----------------|
|          |      | A DOBLE COMPANY |
| dobe isa |      |                 |


| dobleARMS         | World Wid        | de Ener  | gy 🕨 North                         | America G   | rid                  |                    |            |            |                         |       |                             |              |                      |                                  |                      |                        |                                       |         | 3 Days          | ~       | 10       |                   | Hendrik <b>(</b> |
|-------------------|------------------|----------|------------------------------------|-------------|----------------------|--------------------|------------|------------|-------------------------|-------|-----------------------------|--------------|----------------------|----------------------------------|----------------------|------------------------|---------------------------------------|---------|-----------------|---------|----------|-------------------|------------------|
| Search asset      | ≡ IM Re          | port     |                                    |             |                      |                    |            |            |                         |       |                             |              |                      |                                  |                      |                        |                                       |         |                 |         |          | ж                 | i                |
| ~ 🔘 World V       |                  | livision | Location                           | Asset       | Special Id           | Serial<br>Number   | КV         | MVA Manufa | tur Last Sample<br>Date | AH    | I IM<br>Assessment<br>Score | Arcing       | Partial<br>Discharge | Anomalous<br>Water<br>Indication | Thermal<br>Fault Oil | Thermal<br>Fault Paper | Thermal<br>Cellulosic<br>Decompositio | DG - Al | DobleLab<br>TRF | IEC DGA | IEEE DGA | Oil Qua<br>Evalua | tch Only         |
| ) 🗊 Norti         |                  |          | NA Station 15                      | <u>TR 1</u> | M1004401             | A5685T             | 230        | 30         | 06/06/2012              | 1     | 1                           | 1            | 1                    | 1                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        | ~                 |                  |
| ~ 📵 EMEA          | Centra           | al       | NA Station 16                      | <u>TR 4</u> | M1006701             | 8167653            | 345        | 560        | 10/04/2012              | З     | 3                           | 2            | 2                    | 1                                | 2                    | 4                      | 10                                    | 10      | 1               | 5       | 1        |                   | 3                |
| > 💽 Eu            | Centra           | al       | NA Station 16                      | <u>TR 2</u> | M1006601             | 8167651            | 345        | 560        | 05/01/2013              | 6     |                             |              | 5                    | 1                                | 6                    |                        | 10                                    |         | 1               |         | 1        |                   | 1                |
| > 🗑 мі            | Centra Centra    |          | NA Station 17                      | <u>TR 1</u> | M1006501             | 5382851            | 67         |            | 04/04/2013              | 1     | 1                           | 1            | 1                    | 1                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   | 3                |
| > 💿 Mi<br>> 💽 Afi | Centra Centra    |          | NA Station 18                      | <u>TR 1</u> | M1007701             | C0540551           | 115        | 30         | 10/17/2012              | 1     | 1                           | 1            | 1                    | 3                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   | 7                |
|                   | Centra           |          | NA Station 19                      | <u>TR 1</u> | M1000201             | RAR69034           | 110        | 25         | 04/26/2013              | -4    | 4                           | 2            | 7                    | 3                                | 2                    | 2                      | 1                                     | 10      | 1               | 2       | 8        |                   | 5                |
| ~ 🗊 South         |                  |          | NA Station 20                      | <u>TR 1</u> | M1001301             | 1822652770         |            | 30         | 02/06/2013              | 1     | 1                           | 1            | 1                    | 1                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   | 5                |
| > 📀 Bra           | Centra           |          | NA Station 20                      |             | M1001201             | 6538975            |            | 20         | 02/06/2013              | 2     | 1                           | 1            | 1                    | 1                                | 1                    | 1                      | 1                                     | 1       | 1               | 3       | 1        |                   | 4                |
| )                 | Centra           |          | NA Station 23                      |             | M1007901             | SLL56502           |            | 30         | 07/18/2012              | 1     | 1                           | 1            | 1                    | 3                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   | <u>ا</u>         |
| > 🕥 Pe            | Centra           |          | NA Station 23                      |             | M1006701             | SLM54245           |            | 30         | 07/18/2012              | 1     | 1                           | 1            | 1                    | 1                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   |                  |
| ∨ 🖨 Asia R        | Centra<br>Centra |          | NA Station 23                      |             | M1009201             | 137341             |            | 50         | 07/18/2012              | 2     | 1                           | 1            | 1                    | 1                                | 1                    | 2                      | 10                                    | 1       | 1               | 4       | 1        |                   |                  |
|                   | Centra           |          | NA Station 24                      |             | M1007701             | RDP32431           | 115        |            | 03/07/2013              | 1     | 1                           | 1            | 1                    | 2                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   |                  |
| > 💽 Ch            | Centra           |          | NA Station 25                      |             | M1006701             | G851798B           |            |            | 04/11/2013              |       | 1                           | 1            | 1                    | 1                                | 1                    |                        | 1                                     | 1       | 1               | 1       | 1        |                   |                  |
| ) 💽 SE            | Centra           |          | NA Station 25                      |             | M1004801             | RHP39152           |            |            | 08/01/2012              | 1     | 1                           | 1            | 1                    | 1                                | 1                    | 2                      | 1                                     | 1       | 1               | 1       | 1        |                   |                  |
| > 💽 Au            | Centra           |          | NA Station 25                      |             | M1009501             | RHR22433           |            |            | 08/01/2012              | 2     | 1                           | 1            | 1                    | 1                                | 1                    | 1                      | 1                                     | 1       | 1               |         | 1        |                   |                  |
|                   | Centra<br>Centra |          | NA Station 27                      |             | M10052601            | C0469751           |            | 1.2        | 10/22/2012              | 4     | 5                           |              | 1                    | 3                                | 1                    | 19                     | 1                                     | 1       | 4               | 3       | 1        |                   | er               |
|                   | Centra           |          | NA Station 39                      |             | M1001901             | A2043T<br>C0668551 | 115        |            | 02/10/2013              | -     |                             |              |                      |                                  |                      |                        |                                       |         | 1               |         | 1        |                   |                  |
|                   | Centra           |          | NA Station 39                      |             | M1001601             | 6996996            | 115<br>110 |            |                         | -     |                             |              |                      | 3                                |                      |                        |                                       |         | 1               | 3       | 1        |                   |                  |
|                   | Centra           |          | NA Station 39                      |             | M1005001<br>M1008001 | C658432            |            | 20         | 05/02/2013              | 2     | 7                           |              |                      | 3                                |                      | 62                     | 1                                     |         | 13              | 3       | 1        |                   |                  |
|                   | Centra           |          | NA Station 39 ]<br>NA Station 46 ] |             | M1003302             | 1984359            | 13.2       |            | 02/10/2013              | •     | 1                           |              |                      | 2                                | 1                    | 02                     | 1                                     |         | 15              |         | 1        |                   |                  |
|                   | Centra           |          | NA Station 46                      |             | M1003302             | 2215476            | 13.2       |            | 02/20/2013              |       |                             |              |                      | 2                                |                      |                        | 1                                     | 1       | 1               | 1       | 1        |                   |                  |
|                   | Centra           |          | NA Station 46                      |             | M1003300             | C0577751           | 43.8       |            | 02/20/2013              | 2     |                             |              |                      | 1                                |                      |                        | 1                                     | 4       | 1               | 3       | 1        |                   |                  |
|                   | Mexic            |          | Guadalajara ]                      |             | 1002301              | 6533291            | 40.0       | 1.12       | 01/08/2008              | 1     | 1                           | 1            | 1                    | 5                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   | DGA.             |
|                   | Mexic            |          |                                    | TR 3        | M1005101             | HC19367001         | 44         | 11.2       | 08/23/2012              | 1     | 1                           | 1            | 1                    | 1                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   |                  |
|                   | Mexic            |          |                                    | TR 1        | M1002201             | H888460            |            | 5.2        | 08/23/2012              | 33    | 32                          | 71           | 15                   | 3                                | 19                   | 19                     | 1                                     | 100     | 38              | 12      | 35       |                   |                  |
|                   | Mexic            |          |                                    | TR 2        | M1003701             | A5435T             | 44         | 11.2       | 04/18/2013              |       | 1                           | 1            | 1                    | 1                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   |                  |
|                   | Mexic            |          | Mexico City 1                      |             |                      |                    |            | 0.00       | 07/20/2005              | 1     | 1                           | 1            | 1                    | 3                                | 1                    | 1                      | 1                                     | 1       | 1               | 1       | 1        |                   |                  |
|                   | <                | -        | THE ALL AND A LEAD                 |             |                      | 0000000            |            | W.WW.      | 0172012000              |       |                             |              |                      |                                  |                      |                        |                                       |         |                 |         |          | >                 |                  |
|                   |                  | _        |                                    |             |                      |                    |            |            |                         |       |                             | -            |                      |                                  |                      |                        |                                       |         |                 |         |          |                   | >                |
| dobleARMS 3.4.0   | (Build 3 4 0 4   | 15 Sanie | e: 3.4.0.135)                      |             |                      |                    |            |            | Com                     | rinht | © Doble Engine              | erina Comoza | 2013-2014            | Privacy and Le                   | nal Notice           |                        |                                       |         |                 |         | Undater  | 1: 08/06/2        | 014 07-02-       |

#### Transformer Assessment Methods



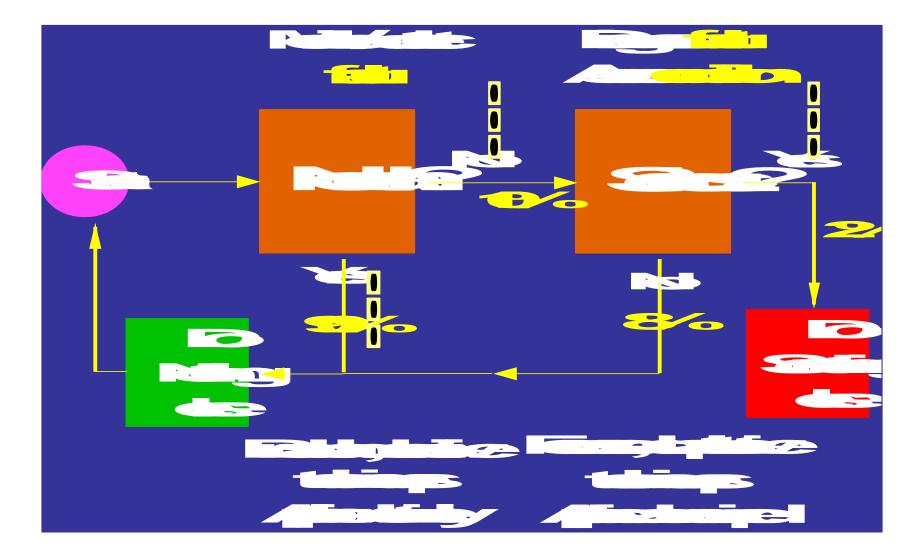


#### 



Substation Asset Overview

**ΛLTΛΝΟVΛ** 


# Finished ???





## Condition Based Methodology

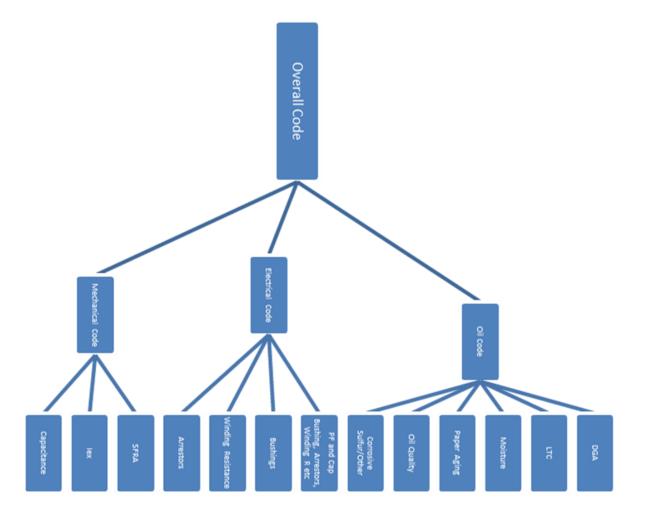




## Asset Health Review Coding



Code 1: Immediate Attention


Code 2: Action in near future

Code 3: Monitor data-possible issue

Code 4: Normal aging-normal sample schedule

Code 5: No problems detected-normal sample schedule

Code 0: No Data Code 0MP: Incomplete Data



#### Asset Register



Create a transformer asset register listing with consistent nomenclature:



#### Design parameters

Manufacturer, Family, Year

#### **Functional parameters**

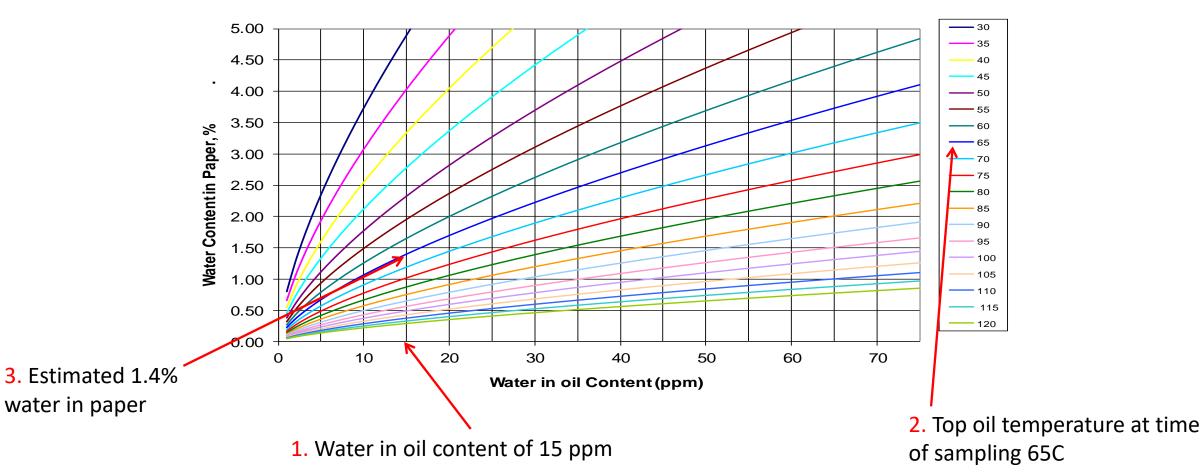
kV, MVA, % Z, etc.

#### **Operational history**

- Service life, Loading

#### **Event history**

- Faults, system events
- Monitoring data: DGA, electrical test data
  - Database/integrated to permit evaluation trends

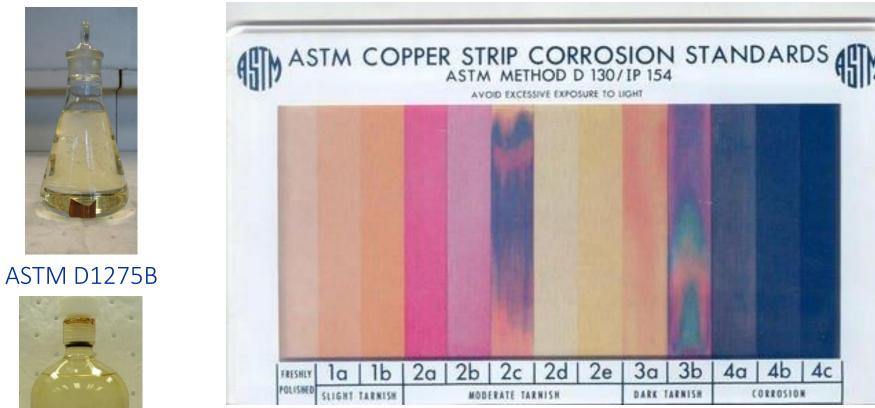

## Oil Laboratory Testing



| DGA                                 | Furanic<br>-MeOH/EtOH<br>-DP | Moisture<br>-%RS<br>-Water in Paper<br>-Dielectric BDV | Oil Quality<br>-IFT<br>-Acidity or NN<br>-PF | -Corrosive Sulfur<br>-Passivator<br>-Foaming<br>-Metals<br>-Stray Gassing |  |  |  |
|-------------------------------------|------------------------------|--------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Active Fault<br>Indication!         | Solid insulation             | Insulation<br>wetness                                  | Oil condition                                | Special tests                                                             |  |  |  |
| Incipient fault conditions          | Condition/aging<br>rate      | Operation/aging<br>rate                                | Condition/aging<br>rate                      | Contamination,<br>Compatibility<br>issues, Pump<br>operations             |  |  |  |
| IEC 60599:2015<br>IEEE C57.104:2019 |                              | IE                                                     | EC 60422                                     |                                                                           |  |  |  |

#### Moisture-in-Paper Estimation (Doble Oil Labs)

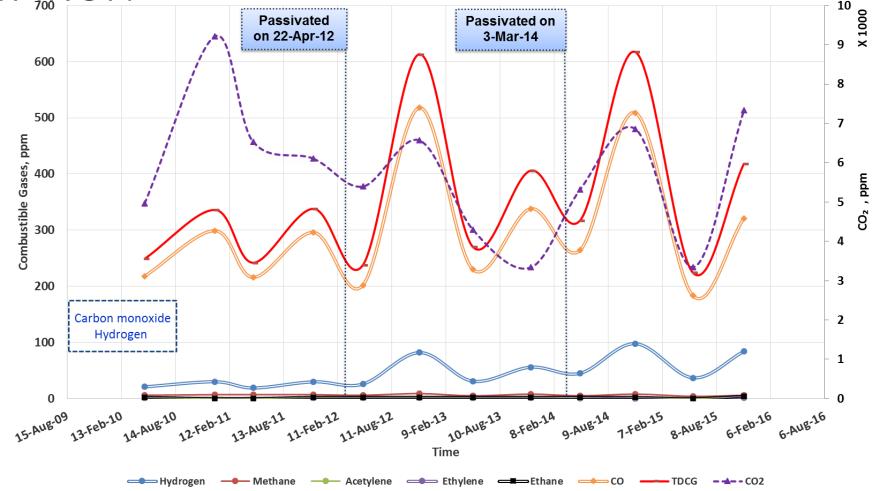





Mineral Oi I - Paper Moisture Equilibrium Curve

#### Oil Contamination with DBDS - Corrosive Sulfur




ASTM D1275A



Doble CCD Tests



# FALSE NEGATIVES - STRAY GASSING AFTER



**ΛLTΛΝΟVΛ** 

#### External Inspection: In-service Examination

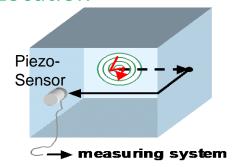
- Visual inspection of the transformer and components
- Leaks, corrosion
- Bushings discoloration, mechanical
- Conservator and bladder
- LTC
- Surge arrestor counter
- Cooling operating properly
- Infrared thermography overheating, bad connections



Loss of nitrogen can have dramatic effect on loss of insulation life, oxygen and moisture



# Additional In-Service Testing: Online Partial Discharge

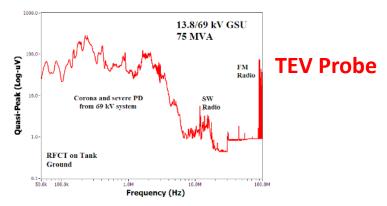

ALTANOVA A DOBLE COMPANY

UHF and HFCT PD Measurements - Detection

**UHF** Antenna



#### Acoustic Measurements -Location






RFI



EMI



### List of Offline Electrical Tests



- Present and historic data, including factory acceptance tests
- To detect dielectric/thermal, mechanical and magnetic circuit problems
  - » Overall Power Factor & Capacitance: to check bulk insulation quality
  - » Bushing Power Factor & Capacitance: to detect insulation quality of bushing (externally & internally), can detect shorted layers / damaged test tap and loss of insulating oil
  - » Core/Frame Insulation Resistance: to check poor insulation between core-frame-ground
  - » Winding Resistance: to detect electrical discontinuities or resistive contacts/joints
  - » Exciting or Magnetising Current: to detect Shorted turns in winding, welded lamination in core
  - » Leakage Reactance: to detect gross Winding deformation
  - » Sweep Frequency Response Analysis: to detect any change in RLC geometry (winding integrity)
  - » Transformer Turns Ratio (TTR): to detect Shorted turns or to confirm the correct ratio after tapchanger repair

## List of Relevant IEC Standards

•

•

•

#### • IEC 60076-1:2011 Power transformers - Part 1: General

- IEC 60076-2:2011
  Power transformers Part 2: Temperature rise for liquid-immersed transformers
- IEC 60076-4:2002

Power transformers - Part 4: Guide to the lightning impulse and switching impulse testing - Power transformers and reactors •

- IEC 60076-5:2006
  Power transformers Part 5: Ability to withstand short circuit
- IEC 60076-6:2007
  Power transformers Part 6: Reactors
- IEC 60076-7:2018

Power transformers - Part 7: Loading guide for mineral-oil-immersed power transformers

• IEC 60076-10:2016 Power transformers - Part 10: Determination of sound levels

- IEC 60076-11:2018 Power transformers - Part 11: Dry-type transformers
- IEC 60076-14:2013

Power transformers - Part 14: Liquidimmersed power transformers using hightemperature insulation materials

IEC 60076-16:2011

Power transformers - Part 16: Transformers for wind turbine applications

- IEC 60076-18:2012 Power transformers - Part 18: Measurement of frequency response
- IEC 60076-16:2018 Power transformers - Part 16: Transformers for wind turbine applications
- IEC 60076-57-129:2017
  Power transformers Part 57-129: Transformers for HVDC applications



IEC/IEEE 60076-57-1202:2017 Power transformers - Part 57-1202: Liquid immersed phase-shifting transformers

• IEC 60599:3.0 2015

Mineral oil-filled electrical equipment in service – guidance on the interpretation of dissolved and free gases analysis

## Conclusions



- The concept of AHI for Fleet Management allows customers to get the best value from ageing populations of transformers / reactors
- A successful program in place, relies on a wide range of data to gain a good understanding of the performance of different designs in service. It is able to identify both *risks* and *opportunities*, especially for 'life extension'.
- All information is consolidated in one place in an easily accessible format.



#### Thank You for Your Keen Interest and Attention

Asim Bashir Bajwa Manager Technical Services Doble PowerTest Ltd. UK <u>abajwa@doble.com</u>





Mar Transformer fleet management - The Asset Health Review (AHR) process (APAC)

Automatica States

## Next ALTANOVA WEBINARS



Manejo de transformadores de potencia: análisis de salud de activos para evaluación de riesgos



Apr Introduction to power transformer testing



Apr Offline testing of underground cables