

AltaNova Introduction

Dr. Tony McGrail The Doble Engineering Company tmcgrail@doble.com

Altanova History

I.S.A. Istrumentazioni Sistemi Automatici S.r.l. is established in Taino ITALY

1999 TECHIMP was born as a spin-off from the University of Bologna ITALY.

- 1.S.A. and TECHIMP merge giving birth to the ALTANOVA GROUP
- 2019 INTELLISAW joins ALTANOVA GROUP

2021

1938

ALTANOVA GROUP becomes part of ESCO Technology Group and joins the Doble Engineering Company, as part of the USG division.

Altanova Today

5550+ CUSTOMERS GLOBALLY

PRODUCT BRANDS

Our Solutions

Electrical Test Equipment

Essential for day-to-day maintenance tests of electrical assets. Useful in specific phases of the asset lifecycle:

- Procure
- Operate
- Maintain
- Decommission.

Professional Services

Diversified offer according to the electrical asset lifecycle:

- Installation and commissioning
- Diagnostic test
- Data analysis
- Consultancy
- Training.

Monitoring Systems

Shift from a time-based maintenance to a condition-based maintenance.

Focus on predictive maintenance and shift in focus from electric asset value cost to network outage costs.

Strong evolution of digitalization trend in the power industry.

Power transformers Current & voltage transformers **Circuit breakers** Protective relays HV gas insulated switchgears Meters and transducers MV/HV/EHV cables Rotating machines MV/LV switchgears Variable speed drives **Overhead** lines Batteries

Creating and using meaningful Asset Health Indices (AHI)

Dr. Tony McGrail The Doble Engineering Company tmcgrail@doble.com

Agenda

Presenter Background

A little on transformers

Some aspects of Asset Health Indices

- Failure modes, expectations and health indexing
- Dunning-Kruger
- Risk of Using Risk Matrices
- Tooth Fairy Science
- <u>Anscombe</u>

Conclusion/Discussion

Aim:

Provide you with something of interest/value/use in your 'day job'.

Presenter background

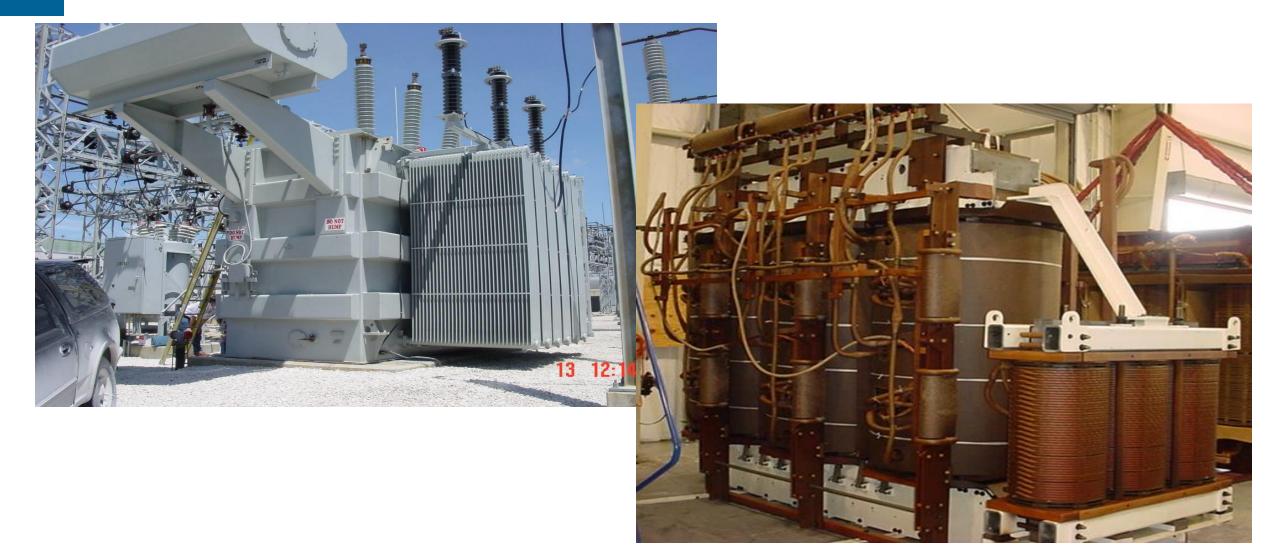
- National Grid UK: substation tech specialist, transformers
 - Go/NoGo decisions: timescales & actions
- National Grid US: Substation Asset Mgr.
 - >2,000 power transformers, many >80 years old...
- Doble Engineering
 - Asset Management and Monitoring Technology

Asset Management Context

- ISO 55000: Asset management
- Talk technical to financial people... financial to technical people
 - 'Translation' needed AHIs sometimes used as a substitute
- Risk Cost Performance Sustainability
- Risk is a combination of hazard probability and consequence
- Expectations actions feedback
- Plan do check act
- Smart analytics: 95% can be achieved through cleaning up the data and use of standard statistical tools...
- Make data available...

"Plans are of little importance, but planning is essential." — Winston Churchill

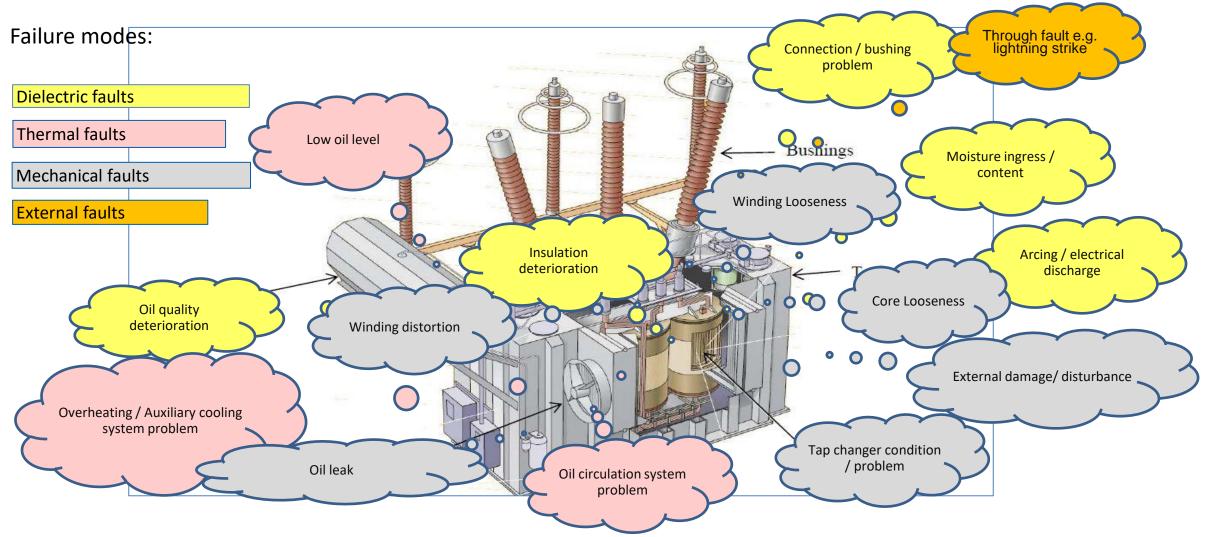
Transformer Assets:



Big Money, Big Data... ...big responsibilities!

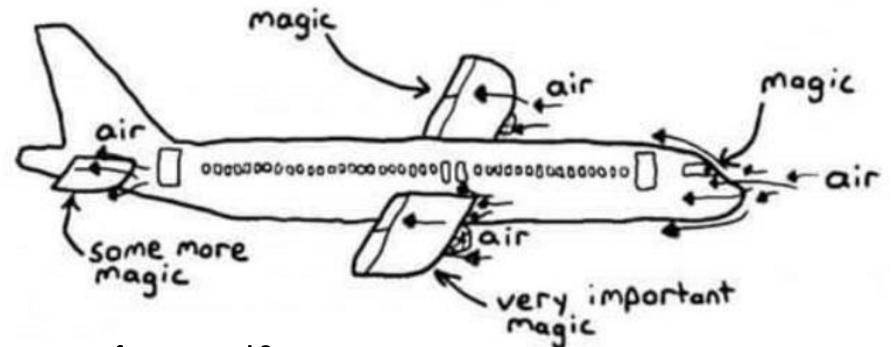
Failure modes are not always obvious

The unexpected...



©2022 Altanova Group. All Rights Reserved

Expectations: failure modes¹


1: ISO 18095 "Condition Monitoring and Diagnostics of Power Transformers"

©2022 Altanova Group. All Rights Reserved

How does the electric supply system work?

Use air transport systems as an analogy: how do planes work?

How does a transformer work?

How much does the <u>decision maker know</u>?

Purchasing decisions? Viability? Commodity approach?

Expected Life?

What is the **probability of failure** of an asset?

100%

Economist: J. M. Keynes: " *In the long run* we are all dead."

Singer/Songwriter: Paul Simon "Everything put together, sooner or later, falls apart."

So... we need to have some interest in time: probability of failure, by when?

Probability of Failure: when???

Story of the tires... if they fail, you may need a new car...

Pressure is at 15 psi for front left tire: what's the PoF of the car?

PoF this week? PoF this month? Today?

More data?

It's Tuesday (+/-15%, you may need to check...) Ok... you're doing 100 kph (62.5mph)

And the pressure is now 12 psi...

Too late. Result?

Misery...

No tacos...

A number/code/color/term to represent the health of an asset: it is our 'best estimate' of the asset health: it is a *model*

Whatever index we derive...

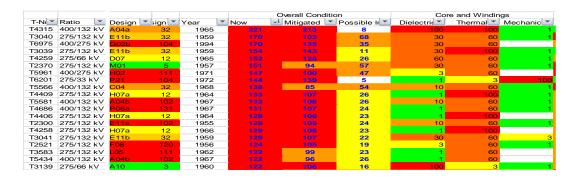
... it should not be a **surprise**!

It should 'document' what we think we know!

It *may* be a proxy for 'Probability of Failure'

©2022 Altanova Group. All Rights Reserved

Physicist Richard Feynman


On physics:

"...you have to have an understanding of the connection of the words with the real world."

These blocks are not transformers...

These health indices are not transformers...

They are *representations* of transformers... they are *'models'* ... digital twins!

"All models are wrong, some models are useful" C.J. Box

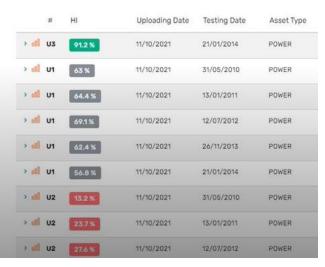
More thoughts from inside a Box¹

"Since all models are wrong... you cannot obtain a "correct" one by excessive elaboration."

"Since all models are wrong... you must be alert to what is *importantly wrong*. It is inappropriate to be concerned about mice when there are tigers abroad."

"The only question of interest is: 'Is the model illuminating and useful?"

And from Dr. Cox²:


"The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd."

What does a health index mean

Depending on how you built the 'health index', it could:

- Summarize what we already know
- Indicate likely failure modes and timescales for action
- Help rank assets for intervention based on 'urgency'
- Have poor precision/accuracy
- May not indicate 'serious issues' if we do not test for them

A 'health index' CAN NOT tell you that the asset will NOT fail in a given time period

Key words:Calibrated, MonotonicAuditable, Justifiable

"Life is under no obligation to give us what we expect"

Irrfan Khan, Actor

Key Words

• Calibrated:

All identical indices have **identical timescales** for action

(all '3s' need to be checked in 1 month, say)

Auditable

We can track the index back to data, failure modes and timescales (we have the evidence and the analysis)

• Monotonic:

A 'worse' index is always associated with a **more urgent** condition (all '3s' are worse than all 2's, say)

• Justifiable:

The process of generating an index is based on **failure mode analysis/urgency**

(the analysis makes sense)

What if we just had one or two assets?

- Gather data
- Read the manuals/guides
- Test and assess
- Make a plan to intervene:
 - maintain, replace, refurbish...
- Act on the plan in a timely manner
- Repeat

- Who needs a health index?
- A health index... what would it do for our one or two assets?

Raw data to an index

Start with something 'simple' – tire pressure in psi. If the tire pressure drops too much, the tire may fail, possibly taking the car with it.

The more the pressure drops, the more urgent the situation is!

How much of a drop is too much? Where are you on the failure mode curve?

How do we turn the measured pressure into a health index?

Creating an Index

What question are you trying to answer?

For just one asset:

- what data do you need, what analysis, what resources?
- Can you identify failure modes and timescales?
- What intervention is needed? When?

What do you want the index to 'look like': letters, numbers, other?

What categories are acceptable? Useful?

Code	Code	Code	Timescale For Action
А	1	John	'Regular' activity
В	2	Paul	5 - 15 years
С	3	George	2 - 5 years
D	4	Ringo	0.5 - 2 years
Е	5	Bert	<6 months

Linear weighted scoring

Evaluate components... choose a scoring system: say **1=good** through **5=bad**

Factor	Trf 1	Trf 2	Trf 3	
DGA Main Tank Score	2	1	1	
Dielectric Score	1	1	1	
Thermal Score	2	1	1	
Mechanical Score	3	4	1	
Oil Score	1	1	1	
DGA LTC Tank Score	3	1 (5	2
Operational Score	2	3	3	
Design/manufacturer Score	1	4	1	
Subject Matter Expert Score	3	1	2	
Sum	18	17	16	

HOW DID WE GET THESE INDIVIDUAL SCORES??? Note: NO AGE SCORE !!!

If you were given this data today... ...which transformer would you investigate first? And why?

Trf 3 because this is the most urgent component

Timescales need to be **calibrated** so all 'X's are the same **timescale**: For example: If a Thermal '5' means do something in 3 months then a DGA '5' also means do something in 3 months...

MAX and ENUM

Calibrated scores: 1=good through 5=bad

	_			_
Factor	Trf 1	Trf 2	Trf 3	
DGA Main Tank Score	2	1	1	
Dielectric Score	1	1	1	
Thermal Score	2	1	1	
Mechanical Score	3	4	1	
Oil Score	1	1	1	
DGA LTC Tank Score	3	1<	5	>
Operational Score	2	3	3	
Design/manufacturer Score	1	4	1	
Subject Matter Expert Score	3	1	2	
Sum	18	17	16	
Normalized Sum (%)	40.0	37.8	35.6	

Trf	5's	4's	3' s	2's	1's
Trf 1	0	0	3	3	3
Trf 2	0	2	1	0	6
Trf 3	1	0	1	1	6

Trf 3 has a MAX of 5 and is highest priority – even with lowest overall score.

What if there were two Trfs with a MAX of 5?

Use enumeration to count how many of each score: the ranking is then highest Enum first, lowest last

Enum	Ran
00333	
02106	
10116	

3

2

1

The ENUM system is easy to start small and grow – and retain urgency

A little learning?

The Dunning Kruger effect

Kruger, Justin; Dunning, David (1999).

"Unskilled and Unaware of It"

Journal of Personality and Social Psychology. 77 (6): 1121–1134

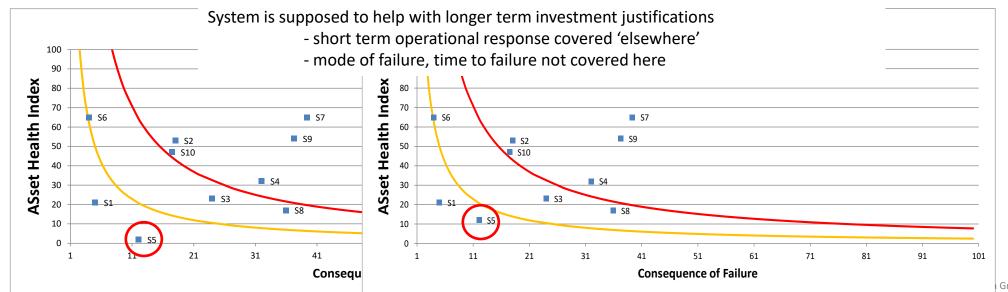
"People with a little knowledge usually have overconfidence in their ability"

Get started and grow

System Overview: only 4 codes! (Categories)

Original System 1=bad, 4 = good

Code	Original System
1	transformer is on active list for replacement within 2-5 years
2	transformer is expected to last up to 5 years and may need to be replaced in 5-10 years
3	Plan to replace ahead of anticipated asset life, design issue identified
4	transformer is expected to last for the foreseeable future, and at least 15 years. No plan to replace.


Revised System – still 1-4, but more detail

Code	Original System
1	transformer is on active list for replacement within 2-5 years
2 a	transformer is expected to last up to 5 years and may need to be replaced in 5-10 years, may well develop into a 1
2b	transformer is expected to last up to 5 years and may need to be replaced in 5-10 years due to insulation ageing.
3 a	Plan to replace ahead of anticipated asset life, design issue identified
3b	Plan to replace ahead of anticipated asset life, design issue identified but not serious.
4	transformer is expected to last for the foreseeable future, and at least 15 years. No plan to replace.

System in use in N. America

	% Final	25.00 5	10.00	10.00 2	10.00 2	5.00	5.00	5.00	10.00		20.00		Sum	100.00		
Substation	Weighting	DGA	2 FQ		2 Bushing Power Factor	Age Score	Faults	Load	Z Failure Rate	TYPE	4 TYPE LTC	TYPE Bushing		AHI	Consequence	RISK
S1		0	0	0	0	5	0	C	0 0	3	4	0)	21	5	105
S2		4	0	0	4	0	0	5	0	0	C	5	;	53	18	954
S3		0	0	0	0	2	0	1	0	0	5	0)	23	24	552
S4		1	0	Û	1	5	0	0	•	0	C	5		32	32	1024
S 5		0	0	1	0	0	0	C	0	0	C	0		2	12	24
S6		5	0	4	5	2	0	C	0	5	5	5		65	4	260
S7		4	1	0	4	0	0	5	5	0	C	5	;	65	39	2558
S8		1	0	0	1	0	0	C	5	0	C	0)	17	36	611
S9		4	1	0	4	2	0	C	5	3	C	0		54	37	2013
S10		4	0	0	4	3	0	C	0	3	4	. 0		47	17	821
Max		5	5	5	5	5	5	5	5	5	5	5		100	100	10000

Group. All Rights Reserved

Choose your modeling approach

and a second	s Asset Management En	tity Manageme	nt User Man	agement Kole N	lanagement Asse	ssments N	lotifications Ris	sk / Criticality	Asset Lifecyc	le Configu	iration								
Assessment	Assessments Settings		Asses	sments > Transfo	rmer							Cho	ose y	our	annr	nach	`		
 Transformer 	rmer					Cho	USC y	our	appi	oaci									
 Bushi Cable 				Doble Default Profi	Assessment Nam	e				Assessm	int Relevance	_		-	Descript	tion		Rolly	up Mode
Dieleo M	ctric				Bushings			-		10 - 1	ndicative					Maiak	stad	Maxim	numScore
C LTC					Cableboxes			•			ndicative				V	Veigł	neu	Avera	ageScore
Mech Operation					Dielectric			•			ndicative		_						numScore
Breaker					IM LTC						Targeted ndicative				C)r			numScore
 Battery Rotating 	Machine				Mechanical						ndicative					1			ageScore ageScore
- Tweeting	,				Operational			•			Loose				I \	Лахіг	num		ageScore
Weig	hted																		
<u> </u>	<i>ані</i> Asset Type кV	Online Loss Of Life	Offline Loss Of Life	Aggregated Risk	Availability Cust Risk	omerImp E Risk	nvironmenta Risk	Financial Risk	Reliability Risk	Safety Ri	sk Annu Reven		nent Replaceme	ent					
04/01/2009 1	30 Three Windi 154	N/A	N/A	77	51	10	10	51	10	22	100000	2000	26 weeks	*					
07/12/2017 8	18 Three Windi 154	N/A	N/A	14	8	8	3	3	1	1	100000	2000	26 weeks	Ξ					
09/01/2009 1	15 Three Windi 154	N/A	N/A				17	17	17	17	100000	2000	26 weeks						
08/08/2017 8	14 Three Windi 154	N/A	N/A	Max	imum		1	1	1	1	100000	2000	12 weeks						
07/12/2017 8	14 Three Windi 154	N/A	N/A	Last Update	AHI Asset Ty	pe KV	Online Loss	Offline Lo	ss Aggreg	ated	Availability	CustomerImp	e Environmental	Financial Risk	Reliability	Safety Risk	Annual	Replacemen	t Replaceme
07/09/2017 8	11 Three Windi 154	N/A	N/A	(UTC -05:00)	Anii Asserty	pe kv	Of Life	Of Life	Risk		Risk	Risk	Risk		Risk	Jarcey Misk	Revenue	Cost	Time
04/25/2013 9	10 Auto Transf 345	N/A	N/A	<u>S/</u> 03/01/2011 9:.	. 30 Three Wind	di 154	N/A	N/A	27		10	1	1	10	10	22	100000	2000	12 weeks
03/28/2017 8	10 Auto Transf 345	N/A	N/A	<u>A</u> 04/01/2009 1	30 Three Wind	di 154	N/A	N/A	77		51	10	10	51	10	22	100000	2000	26 weeks
/03/01/2011 9	8 Three Windi 154	N/A	N/A	<u>B</u> 01/14/2018 9:.	. 30 Three Wind	di 154	N/A	N/A	3		1	1	1	1	1	1	100000	2000	26 weeks
			2	<u>′S</u> ‡09/01/2009 1	30 Three Wind	di 154	N/A	N/A	57		22	22	22	22	22	22	100000	2000	26 weeks
				<u>/S ‡09/01/2009 9:</u> .	. 30 Three Wind	di 154	N/A	N/A	59		51	22	1	5	10	10	100000	2000	26 weeks
				08/08/2017 8:.	. 30 Three Wind	di 154	N/A	N/A	3		1	1	1	1	1	1	100000	2000	12 weeks
				07/09/2017 8:.	. 30 Three Wind	di 154	N/A	N/A	28		1	1	22	1	5	22	100000	2000	26 weeks
				07/12/2017 8:.	. 30 Three Wind	di 154	N/A	N/A	29		10	10	10	10	10	22	100000	2000	26 weeks
				07.40.0047.0	20 TI 11				_								400000	2000	25

©2022 Altanova Group. All Rights Reserved

How about Log/Exp scales?

League table for transmission operator:

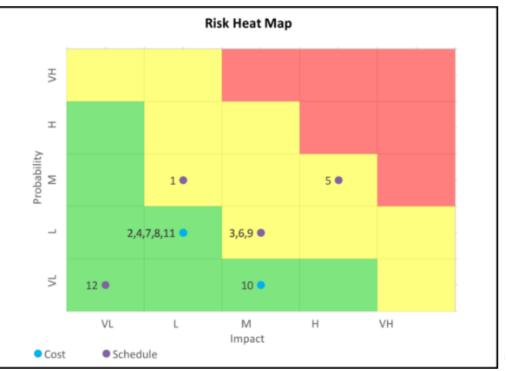
sorted by worst overall condition score

	Curr Design/Manufacturer					nt and Mitigated Condition				Possib impro [,]	le vement		Component score based on sub-components				
	E	Design/M	anufactur \	er					in score								
								\checkmark		K		K		\rightarrow			
								(Overall Condition	on	Cor	e and Winding	JS	Oil		OLTC	Exterior
T-N	Ratio 📑	Rated P	Manufact 🞽	Design	🔹 sign 🔳	Year	Now		Mitigated	Possible Ir	Dielectric	Thermal	Mechanic 🗾	Ageing 🔽 Cor	ntamina 🚬	-	.
T4315	400/132 k\	/ 240 MVA	AEI Wythen	A04a	32	1965	2	221	213	8	100	100	1_	13	10	3	10
T3040	275/132 k\	/ 120 MVA	EEC	E11b	32	1959	1	7 0	103	68	30	60	1	190	10	10	10
T6975	400/275 k∖	/ 1000 MVA	GEC	G02b	104	1994	1	7 0	135	35	30_	60		36	100		1
T3039	275/132 k\	/ 120 MVA	EEC	E11b	32	1959		154	143	11	30	100	1	23	10	10	3
T4259	275/66 kV	180 MVA	CP	D07	12	1965	1	52	126	26	60	60	1	70	10	1	
T2370	275/132 k\	/ 120 MVA	MVE	M01	5	1957	1	51	94	57	30	60	1	160	10	3	<mark>. 10</mark>
T5961	400/275 k\	/ 750 MVA	HHE	H02	111	1971	1	47	100	47	3	60		140			3
T6201	275/33 kV	100 MVA	PPT	P21	104	1972	1	44	139	5	1	3	100	13		1	10
T5566	400/132 k\	/ 240 MVA	CAP	C04	32	1968	1	38	85	54	10	60	1	140	30	1	
T4409	275/132 k\	/ 240 MVA	HHE	H07a	12	1964	1	33	107	26	1	100	1	70	10	3	<mark>.</mark>
T5581	400/132 k\	/ 240 MVA	AEI Wythen	A04b	102	1967	1	32	106	26	10	60	1	70	10	3	
T4686	400/132 k∖	/ 220 MVA	PPT	P06a	131	1967	1	31	107	24	1	60	1	63	10	1	10
T4406	275/132 k\	/ 240 MVA	HHE	H07a	12	1964	1	29	106	23	1	100		63	10	1	
T2300	275/132 k\	/ 120 MVA	EEC	E11a	102	1955	1	29	105	24	10	60	1	70		1	10
T4258	275/132 k\	/ 240 MVA	HHE	H07a	12	1966	1	29	106	23	1	100		63	10	1	
T3041	275/132 k\	/ 120 MVA	EEC	E11b	32	1959	1	29	107	22	30	60	3	43	30	10	
T2521	275/132 k\	/ 120 MVA	FER	F08	120	1956	1	24	105	19	3	60	1	50	10	1	
T3583	275/132 k\	/ 180 MVA	FUL	L05	111	1962	1	22	99	23	1	60		63	10	1	
T5434	400/132 k\	/ 240 MVA	AEI Wythen	A04b	102	1967	1	22	96	26	1	60		70	10	3	
T3139	275/66 kV	120 MVA	AEI Rugby	A10	3	1960	1	22	106	16	100	3	1	40	10	1	

Categories Feedback Loop

	Ass	et Health C	ategory									
Transformer	Before Scrapping	After Scrapping	% Accura	ste		Reaso	nfor Scrapping					
1	2a		50		As	set Health C	Category					
2	20 2a	2a		Transformer	Before Scrapping	After Scrapping	% Accurate	Reason for Scrapping				
3	1	2a	50	8	1	2b	50	Overheating fault - thought un-repairable but it was!				
				9	1	1	100	Failed Suddenly but RMHZ in place as suspected winding circulation currents, known design issues. Operated to failure.				
4 5	2b 2a	2b 2a	100 100	10	2b	3	50	Suspected overheating issues and not in the windings. Overheating on shield rings (known design issues). But not as aged as predicted.				
6	2b	2b	100	11	2b	3	50	Suspected very aged insulation, poor design. Not as aged when scrapped. Even with > 3ppm 2-FAL.				
7			100	12	2b	3	50	Suspected very aged insulation, poor design. Not as a ged when scrapped.				
	\checkmark	\lor		13	4	2b	25	Failed Suddenly/Insulation Ageing. FFA level had been masked due to oil processing/regeneration				
				14	2a	2a	50	Failed Suddenly/Selectorfault. But had suspected core/frame insulation issues which were correct				

"The Risk of Using Risk Matrices"



"Furthermore, Risk Matrices (RMs) are recommended in numerous international and national standards such as ISO, API, and NORSOK. The popularity of RMs has been attributed in part to their visual appeal, which is claimed to improve communications."

"Despite these claimed advantages, we are not aware of any published scientific studies demonstrating that RMs improve risk-management decisions. (The use of RMs to analyze and manage risks *may* be better than doing nothing.)"

- Range compression: same category for very different risks
- Centering bias: people avoid the extremes
- Category definition bias: people make stuff up
- Ranking reversal issues: changing scales can be bad
- Lie factor: misrepresentation (Stanford)
- "How to measure anything"...

Sapolski: 'We think in categories²'

Using an Index

You've compressed a lot of data, rules, guides and detail into a single value. You have put groups/codes/categories in place: DOES IT HELP???

Problem of thinking in categories:

- Things within a category are seen as more similar than those in other categories
- Things in other categories are seen as more different than those in this category
- Why treat the members of a category in the same way

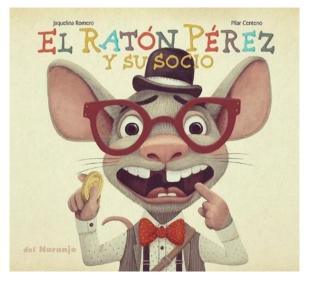
Use a percent score? Percent of what? What does the number mean?

Is the index 'useful'??? Calibrated, Monotonic, Auditable, Justifiable?

What was the question again?

Tooth Fairy Science... Raton Perez¹?

Harriet Hall, MD²


You could measure how much money the Tooth Fairy leaves under the pillow, whether she leaves more cash for the first or last tooth, whether the payoff is greater if you leave the tooth in a plastic bag versus wrapped in tissue versus 'free', multiple teeth, tooth under pillow or by the pillow etc etc..."

"You can get all kinds of good data that is **reproducible** and **statistically significant**."

"Yes, you have learned something. **But you haven't learned what you think you've learned**, because, sadly, there is no real Tooth Fairy." (*So far as we know…*)

1: <u>https://skepticalinquirer.org/exclusive/tooth-fairy-science-part-1/</u>2: "Memoirs of a Female Flight Surgeon", H. Hall

©2022 Altanova Group. All Rights Reserved

Post hoc, ergo propter hoc: Placebos?

Present fleet status

Replace only oldest

New weighted

2

1 1.6

1.6

3

2.8

1.4

2

3

1

2

1.4

1.6

1.4 1.4

3.2

1.6

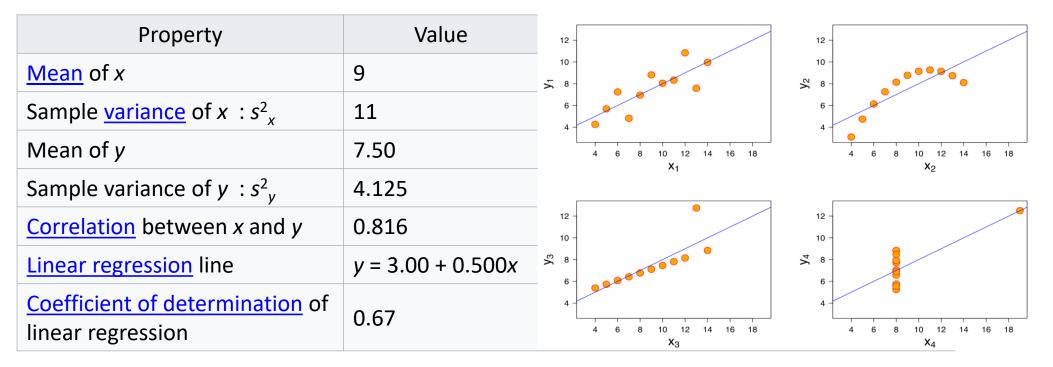
2

1.2

1.8

1.85

Replace at random


	+							-	-
							-1		New Age
I.D.	YoM	Age	DGA Score	indings Sco	Age Score	Weighted Sum		New Age	Score*
S1	1987	29	3	1	2	2		29	2
S2	1952	64	1	1	5	1.8		1	1
S3	2001	15	2	1	2	1.6		15	2
S4	1971	45	1	1	4	1.6		45	4
S5	1976	40	5	1	3	3		40	3
S6	1968	48	4	1	4	2.8		48	4
S7	1976	40	1	1	3	1.4		40	3
S8	1959	57	1	2	4	2		57	4
S9	1975	41	1	5	3	3		41	3
S10	2015	1	1	1	1	1		1	1
S11	1959	57	1	2	4	2		57	4
S12	1986	61	2	1	5	2.2		1	1
S13	1958	58	1	1	4	1.6		58	4
S14	1965	65	1	2	5	2.2		1	1
S15	2004	12	2	1	1	1.4		12	1
S16	1965	51	5	1	4	3.2		51	4
S17	1960	56	1	1	4	1.6		56	4
S18	1964	52	2	1	4	2		52	4
S19	1996	20	1	1	2	1.2		20	2
S20	1983	33	1	2	3	1.8		33	3
Average	Average	42.25	1.85	1.4	3.35	1.97		32.9	2.75
Weights	Age	20							1
	Windings	40		Expecte	d life	60			
	DGA	40		Replace	number ~	3			
C									

		New Age	New
Replace?	New Age	Score*	weighted
	29	2	2
	64	5	1.8
	15	2	1.6
	45	4	1.6
	40	3	3
*	1	1	2.2
	40	3	1.4
	57	4	2
	41	3	3
	1	1	1
	57	4	2
	61	5	2.2
*	1	1	1
*	1	1	1.4
	12	1	1.4
*	1	1	2.6
	56	4	1.6
	52	4	2
	20	2	1.2
	33	3	1.8
	31.35	2.7	1.84

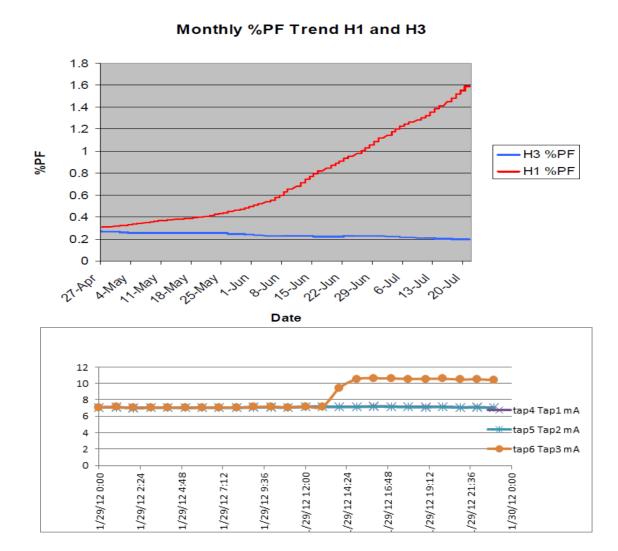
Perils of Summary Statistics

Anscombe Quartet¹: 4 data sets with similar statistical properties:

Anscombe Quartet: the visual properties, however, are quite different

- 1: https://en.wikipedia.org/wiki/Anscombe's_quartet
- 2: http://www.thefunctionalart.com/2016/08/download-datasaurus-never-trust-summary.html
- 3: <u>https://www.autodesk.com/research/publications/same-stats-different-graphs</u>

Condition Monitoring?


If a monitor gives an alert – use that 'by itself' to trigger the action plan you put in place when the monitor was installed.

Tell me you have thought about the alert settings!

Tell me you've a plan for every alert on every monitor?

Don't go from ignorance to negligence... an index won't save you!

Conclusions?

Risk from a hazard = f(Prob,Con) Probability of failure is difficult to evaluate (nuanced) Consequence is easier to evaluate (calibrate)

Asset Health Indices may be misleading (4 adjectives) Sapolsky: We think in categories (which is misleading) Risk Heat Maps are usually misleading (many reasons)

Box: All models are wrong, some models are **useful Duning-Kruger**: A little learning is a **dangerous** thing

Questions? Comments? Feedback?

Tony McGrail

tmcgrail@doble.com

Thank you!

Dr. Tony McGrail The Doble Engineering Company tmcgrail@doble.com

Feb Medición y detección de descargas parciales

Next ALTANOVA **WEBINARS**

Feb Diagnóstico en línea de cables subterráneos

15 Feb

09

 $\mathbf{I}(\mathbf{0})$

Creating and using meaningful Asset Health Indices (AHI) - APAC

Methoden zur Zustandsbewertung von Mittel- und Hochspannungsbetriebsmitteln

22 Feb Desarrollo y utilización de Índices de Salud (AHI) más significativos en Activos Eléctricos