
Release Note

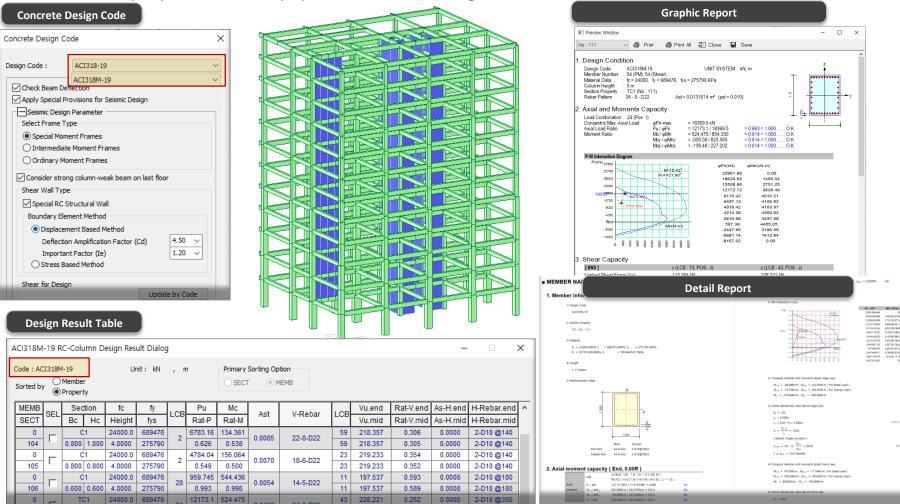
Release Date : Mar. 2022

Product Ver. : midas Gen 2022 (v1.1) and Design+2022(v1.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Enhancements

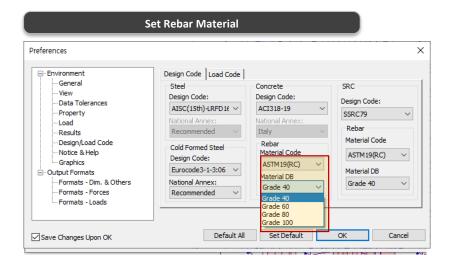

• midas Gen

1) New American RC Code : ACI318-19 (for US.SI)	4
2) New Taiwanese RC Code : TWN-USD111	7
3) Beam-Column Joints check for Existing Building as per NTC2018	10
4) Crack Control Check for RC Column as per EC2:04 & NTC	12
5) SCWB Design/Checking Method Option as per ACI Series	14
6) Thailand Code : DPT (Wind and Seismic load)	15
7) Addition of Thailand DB(TIS for SI,MKS)	17
8) Addition of Indonesia DB(SNI)	18
9) Earthquake Scaling Calculator	19
10) Preview function of Start Page	22
11) Revit 2022 Interface	23

1. New American RC Code : ACI318-19 (US.SI)

Add ACI318-19(US)/ACI318M-19(SI) Code for RC Design

1. New American RC Code : ACI318-19 (US.SI)


Add ACI318-19 Load combinations

For Concrete Design			
Automatic Generation of Load Combinations X	-		
Option Add O Replace Add Envelope			
Code Selection O Steel O Concrete O SRC	Provision	Load factors and combinations	Remark
Ocol Formed Steel Footing Aluminum Design Code : ACI318-19		1.4 (D+F) 1.2(D+F+T) +1.6(L+H) + 0.5(Lr or R)	
Scale Up of Response Spectrum Load Cases Scale Up Factor : Image: Track of the spectrum Load Cases Factor Load Case 1.130 RX 1.540 RY Delete	Strength Load Combinations	1.2D +1.6(Lr or R) + (1.0L or 0.5W) 1.2D ± 1.0W + 1.0L +0.5(Lr or R) 1.2D ± 1.0E + 1.0L 0.9D ± 1.0W + 1.6H	 D : Dead Load F : Fluid Load T : Temperature Load H : Lateral pressure load of soil and water in soil L : Live load
Strength-level Oservice-level Consider Lateral Soll Pressure Factor Load Factor : 0.9 Manipulation of Construction Stage Load Case ST : Static Load Case Os : Construction Stage Load Case OS : Construction Stage Load Case OS T Only OS Only ST +CS Consider Orthogonal Effect	Allowable stress Load Combinations	$0.9D \pm 1.0E + 1.6H$ $D + F$ $D + H + F + L + T$ $D + H + F + (Lr \text{ or } R)$ $D + H + F + 0.75[L+T(Lr \text{ or } R)]$ $D + H + F \pm (0.6W \text{ or } E / 1.4)$	 Lr : Roof live load R : Rain load W : Wind load E : Earthquake load (=Eh + Ev) Em : maximum effect of horizontal and vertical ea rth-quake force (=Ω₀Eh) O : Coincrist force force for the force force for the force for the force force force for the force forc
Set Load Cases for Orthogonal Effect	Creation	1.2D + 1.0L +1.0Em	 Ω₀: Seismic force amplification factor Eh : Horizontal earthquake load Ev : Vertical earthquake load (not provided in Gen2 022 v1.1)
Vior Special Seismic Load for Vertical Seismic Forces Factors for Seismic Design Will Execute Construction Stage Analysis Consider Losses for Prestress Load Cases	Special load combinations	0.9D ± 1.0Em	
Transfer Stage : 1 Define Service Load Stage : 1 Factors OK Cancel			

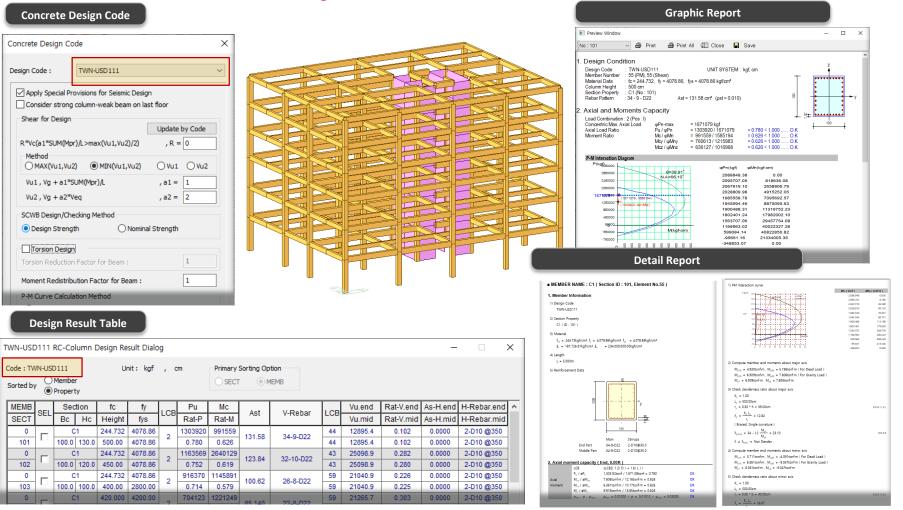
1. New American RC Code : ACI318-19 (US.SI)

Add New Rebar DB and material as per ASTM19

Rebar strength as per ASTM 19

	Tensile Strength	Yield Strength
	Fu (psi)	Fy (psi)
Grade 40	60,000	40,000
Grade 60	80,000	60,000
Grade 80	100,000	80,000
Grade 100	117,000	10,000

Rebar Information × Rebar Code ASTM \mathbf{A} Dia Area Dia(Out) Weight СНК Name (in) (in²) (in) (kips/in) #3 0.3750 0.1100 0.3750 0.0000 П #4 0.5000 0.2000 0.5000 0.0001 п #5 0.6250 0.3100 0.6250 0.0001 п #6 0.7500 0.4400 0.7500 0.0001 #7 0.8750 0.6000 0.8750 0.0002 #8 1.0000 0.7900 1.0000 0.0002 #9 1.1280 1.0000 1.1280 0.0003 #10 1.2700 1.2700 1.2700 0.0004 п #11 1.4100 1.5600 1.4100 0.0004 п #14 1.6930 2.2500 1.6930 0.0006 п #18 2.2570 4.0000 2.2570 0.0011 ¥ OK Close


Rebar DB as per ASTM19 & Design rebar setting

MIDAS

2.New Taiwanese RC Code : TWN-USD111

Add TWN-USD111 Code for RC Design

2.New Taiwanese RC Code : TWN-USD111

Add TWN-USD111 Load combinations

For Concrete Design Automatic Generation of Load Combinations X Option X		Table 5.3.1 Load Combinations						
Add O Replace Code Selection	Provision	Load factors and combinations	Remark					
Steel Cold Formed Steel Aluminum Design Code : TWN-USD 100		1.4 D						
Scale Up of Response Spectrum Load Cases Scale Up Factor: 1 RX Factor Load Case Add	Strength Load Combinations	1.2D+1.6L + 0.5(Lr or S or R)						
1.130 RX Modify 1.540 RY Delete Manipulation of Construction Stage Load Case 51 : Static Load Case		1.2D +1.6(Lr or S or R) + (1.0L or 0.8W)	 D : Dead load L : Live load 					
SI : Statu Load Lase CS : Construction Stage Load Case ST Only CS Only ST+CS Consider Orthogonal Effect Set Load Cases for Orthogonal Effect		1.2D ± 1.6W + 1.0L +0.5(Lr or S or R)	 Lr : Roof live load S : Snow load R : Rain load 					
100 : 30 Rule SRSS(Square-Root-of-Squares) Generate Additional Load Combinations for Social Seismic Load		1.2D ± 1.0E + 1.0L +0.2S	W : Wind loadE : Earthquake load					
for Vertical Seismic Forces Factors for Seismic Design Will Execute Construction Stage Analysis		0.9D ± 1.6W						
Consider Losses for Prestress Load Cases Transfer Stage : 1 Define Service Load Stage : 1 OK Cancel		0.9D ± 1.0E						

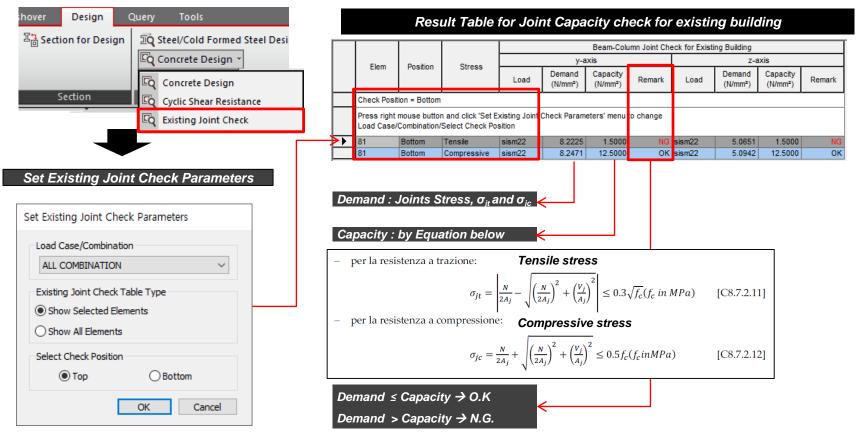
2.New Taiwanese RC Code : TWN-USD111

Add Concrete/Rebar DB and material as per CNS560-18

S	et Rebar Material		
Preferences	Design Code Load Code Steel Design Code: TWN-ASD96 ~ National Annex: Recommended Oesign Code: AISI-CFSD08 ~ National Annex: Recommended	Concrete Design Code: TWN-USD 111 V National Annex: Italy V Rebar Material Code CNS560-18(RC) V Material DB SD420W V SD280	SRC Design Code: TWN-SRC100 ~ Rebar Material Code CNS560-18(RC) ~ Material DB SD280W ~
Save Changes Upon OK	Default All	SD280W SD420 SD420W SD490W SD590W SD550W SD690	OK Cancel

Rebar strength as per CNS560-18

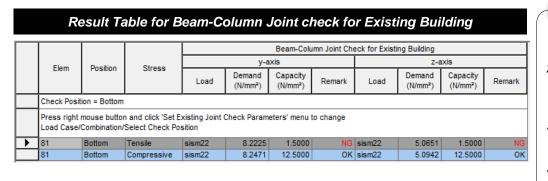
	Yield Strength Fy (kgf/cm ²)
SD280	2,800
SD280W	2,800
SD420	4,200
SD420W	4,200
SD490W	5,000
SD550W	5,600
SD690	7,000


Concrete Material DB									
aterial Data									
General Material ID 1		Name	Girder						
Elasticity Data Type of Design Concre		Steel Standard DB Product		~					
Type of Material Isotropic	rthotropic	Concrete Standard DB	CNS560-18(RC) Code	< <					
Steel Modulus of Elasticity :	Elasticity: 0.0000e+00		C210 C245 C280						
Poisson's Ratio :	0		C315 C350 C420						
Thermal Coefficient : Weight Density :	0.0000e+00	1/[C] kgf/cm³	C560 C700						
Use Mass Density:	0	kgf/cm³/g							
Concrete Modulus of Elasticity :	1.7583e+05	kgf/cm²							
Poisson's Ratio :	0.167								
Thermal Coefficient :	1.0000e-05	1/[C]							
Weight Density :	0.0024	kgf/cm³							
Use Mass Density:	2.447e-06	kgf/cm³/g							

3. Beam-Column Joints check for Existing Building as per NTC2018

Beam-Column Joints Capacity check for existing building

• Design > result > Concrete Design > Existing Joint Check



3. Beam-Column Joints check for Existing Building as per NTC2018

Beam-Column Joints check for existing building

Design > result > Concrete Design > Existing Joint Check

✓ Use Tips

- 1) This check option is activated only with NTC2018.
- If 'Apply Special Provision for Seismic Design' of concrete design code is active, this check option can't be activated.
- 3) This check must be performed only for 'Not Confined Joint' as defined in § 7.4.4.3 of the NTC
- This check is 'existing structure review', so it is calculated using the beam reinforcement information entered by the user.

✓ Note

C8.7.2.3.5 Beam and Column for Existing Building as per CIRCOLARE NTC2018

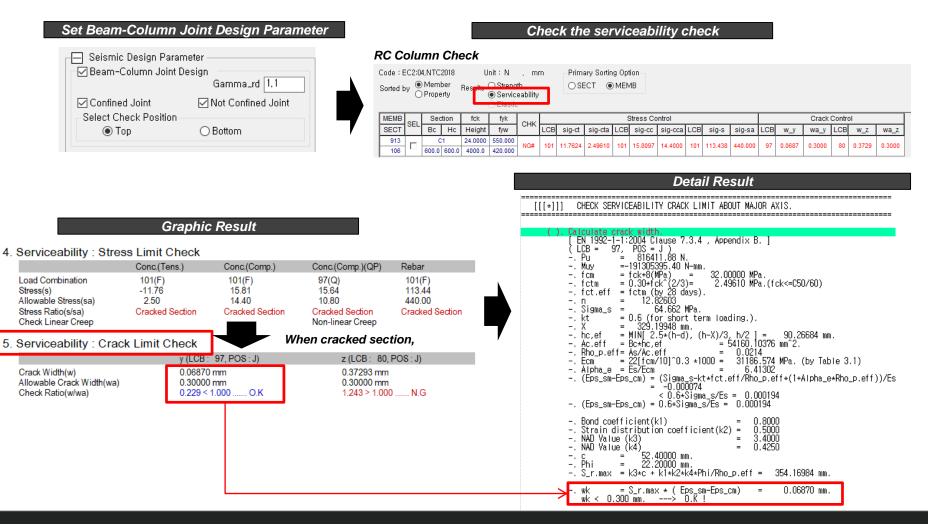
- [Calculation & check of diagonal tensile stress for beam-column joint]

$$\sigma_{jt} = \left| \frac{N}{2A_j} - \sqrt{\left(\frac{N}{2A_j}\right)^2 + \left(\frac{V_j}{A_j}\right)^2} \right| \le 0.3\sqrt{f_c} (f_c \text{ in } MPa) \qquad [C8.7]$$

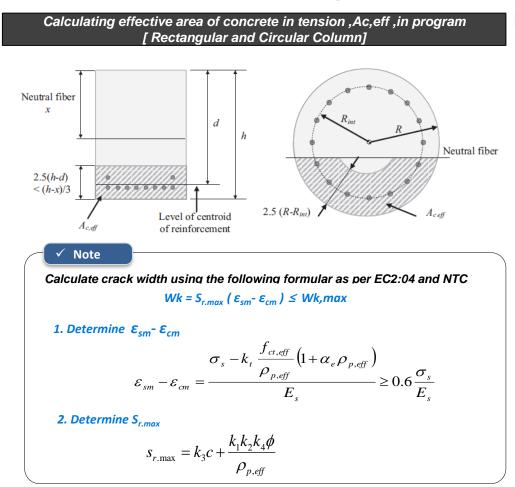
[Calculation & check of diagonal compressive stress for beam-column joint]

$$\sigma_{jc} = \frac{N}{2A_j} + \sqrt{\left(\frac{N}{2A_j}\right)^2 + \left(\frac{V_j}{A_j}\right)^2} \le 0.5 f_c(f_c inMPa)$$

Where,


1) N : Axial force acting on the upper column (+ : compressive,-:tensile)

- 7.2.11] **2)** *Vj* : Total shear acting on the joint, obtained as a sum algebraic of the shear transmitted by the upper pillar and of the horizontal stresses transmitted by the upper parts of the beams
- [C8.7.2.12] **3)***Aj* : *bj* * *hjc* where *bj* and *hjc* are defined in § 7.4.4.3.1 of the NTC


4. Crack Control Check for RC Column as per EC2:04 & NTC

RC Column Crack Widths Check as per EC2:04 & NTC2018

4. Crack Control Check for RC Column as per EC2:04 & NTC

RC Column Crack Widths Check as per EC2:04 & NTC2018

✓ Use Tips

- 1) The stress control for cracked section is performed on each axis in program, Also crack control is performed on each axis (y & z axis)
- 2) In GSD, you can also check stress control for cracked section on bi-axis.
- For calculating effective area of concrete in tension for circular cross sections(Ac,eff), program use the proposal by Wiese et al (left side)

- For determing ε_{sm} - ε_{cm}

1) ϵ_{sm} : The mean strain in the reinforcement under the relevant combination of loads, including the effect of imposed deformations and taking into account the effects of tensile stiffening.

2) ϵ_{cm} : The mean strain in the concrete between cracks.

3) σ_{s} :The stress in the tension reinforcement

4) α_e : Es / Ecm.

5) K_t : factor dependent on duration of the load.

0.6 for short-term load, 0.4 for long-term load 6) $\rho_{p,eff}$: As / Ac,eff

- For determing S_{r.max}

1) ϕ :bar diameter. The program uses the ϕ of the outer layer.

2) c : cover to the longitudinal reinforcement.

3)k1 : A coefficient accounting the bond properties of rebar (0.8 for high bond bars)

4)k2 : Coefficient accounting for distribution of strain. (0.5 for bending)

5)k3 : 3.4 (recommended values)

6) k4 : 0.425(recommended values)

5. SCWB Design/Checking Method Option as per ACI Series

Add Nominal Strength Method for design force calculation special provision for seismic design

Design > RC Design> Design Code > SCWB Design/Checking Method

, , , , , ,
 2) This option can be activated when ① ACI 318-19,14, NSCP-2015: Special Moment Frames in Seismic Design Parameter ② NSR-10 : DES(Special Energy Dissipation) or DMO (Moderate Energy

1.Column design moment as per options performing Ductile Design& Checking

[Design Strength Method] Using the Design strength of beams, $\phi_b M_n$

$$\begin{split} \boldsymbol{M}_{c,B} = & \left(\frac{6}{5}\right) \left(\boldsymbol{\emptyset}_{b} \boldsymbol{M}_{nb,L} + \boldsymbol{\emptyset}_{b} \boldsymbol{M}_{nb,R} \right) \left(\frac{\boldsymbol{M}_{ce,B}}{\boldsymbol{M}_{ce,T} + \boldsymbol{M}_{ce,B}} \right) \\ \boldsymbol{M}_{c,T} = & \left(\frac{6}{5}\right) \left(\boldsymbol{\emptyset}_{b} \boldsymbol{M}_{nb,L} + \boldsymbol{\emptyset}_{b} \boldsymbol{M}_{nb,R} \right) \left(\frac{\boldsymbol{M}_{ce,T}}{\boldsymbol{M}_{ce,T} + \boldsymbol{M}_{ce,B}} \right) \end{split}$$

[Nominal Strength Method] Using the nominal strength of beams, M_n

$$\begin{split} M_{c,B} = & \left(\frac{6}{5}\right) \left(M_{nb,L} + M_{nb,R}\right) \left(\frac{M_{ce,B}}{M_{ce,T} + M_{ce,B}}\right) \\ M_{c,T} = & \left(\frac{6}{5}\right) \left(M_{nb,L} + M_{nb,R}\right) \left(\frac{M_{ce,T}}{M_{ce,T} + M_{ce,B}}\right) \end{split}$$

2.SCWB Ratio Calculation as per options performing SCWB Design & Checking

[Design Strength Method] Using the Design strength of beams and Column, $\phi_b M_{nb}$, $\phi_c M_{nc}$

$$Ratio = \left(\frac{\phi_c M_{nc,T} + \phi_c M_{nc,B}}{\phi_b M_{nb,L} + \phi_b M_{nb,R}}\right)$$

[Nominal Strength Method] Using the nominal strength of beams&Column , M_{nb} , M_{nc}

$$Ratio = \left(\frac{M_{nc,T} + M_{nc,B}}{M_{nb,L} + M_{nb,R}}\right)$$

6. Thailand Code : DPT (Wind and Seismic load)

Add DPT.1311-50:2007(Wind Load)

25 Basic Wind Speed Terrain Category 1,00 Importance Factor Topographic Effects Include Topographic Effects Gust Factors and Pressure Coefficient Auto Calculate by Structure Informa 2,5 Ortho. Major Additional Parameters Across Wind Torsional Wind Wind Response (Disp, / Accel,) Parameters of Wind Vibration, Wind Load Direction Factor (Scale Factor X-Dir, 1 Y-Dir, 0 Z-Ro Additional Wind Loads (Unit:N,mm) Along Add.-Y Across Along Story Add.-X Add.-X <

Wind Load Profile,...

OK

Wind Load

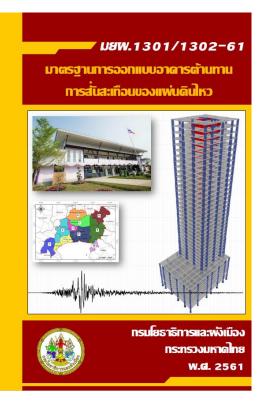
General Me

Zone 1

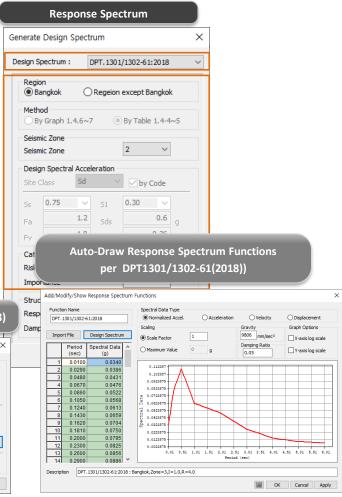
Add/Modify Wind Load Specification

Wind Load Parameters
 Application Method
 Simplified Method

Common Parameters Wind Zone


Description :

	Wind l	oad Cal	c.Shee	t per D	PT131	1-05(200	07) 🔀 % 🖄 🔤 🗚 🕂 🗐 🗇
×	00002	WIND LOADS	BASED ON	DPT.1331-9	50:2007 (DETAILED METH	10D) [UNIT: N, mm]
×	00003 00004 00005 00006 00007 00008 00009 00010 00011 00012 00013 00014 00015 00016 00016 00016 00016 00018 00019 00020 00021 00021	1. BASIC INF Design Co Calculat Wind Zona Average F Basic Win Exposure Importano	PUT DATA de ion Method Soof Heigh nd Speed, Category category category and Natura Satio TOR or) HIC EFFECT idered FOR WIND se	l V50 Iw I Frequenc		: DPT.1 Detai : 1 : 25.00 B : 1.00 : Major : 2.50 : 2.50 : F = p	1331-50:2007 iled Method 0.00 r = 0.00, Ortho. = 0.00 r = 0.0000, Ortho. = 0.000
~	00029 00030 Wind 00037 00038 00039	5. SCALE FAC X-direct Y-direct	ional Wind ional Wind rofile p ction	IND LOADS Loads Loads Der DP	T1311-	: SFy = 05(2007)	= 0.00
	00040 00041 00042 00043 00044 00045 00048 00047 00048	Compone • X-Dir O Y-Dir O X & Y- O SRSS			elect Profile) Story Ford) Story She) Overturnir	ce ar	127 117 107 57
	00049 00050	Story Name	Elev.	Loaded H	Loaded B	Wind Forc ^	88
Add	00051 00052 00053 00054 1	Roof 12F 11F 10F 9F 8F 7F 6F 5F < File Nam D:₩00,20		2000.0 4000.0 4000.0 4000.0 4000.0 4000.0 4000.0 4000.0 4000.0 2022_公世・7	29100.0 29100.0 29100.0 29100.0 29100.0 29100.0 29100.0 29100.0 29100.0 29100.0	37639.851 72217.981 69080.688 65588.459 62539.64 59109.375 59109.375 59109.375	77 er er er er er e.t e.t o 1000 2000 5000 7000
				ad Calc, S		Browse	Wind Force
Apply							Close



6. Thailand Code : DPT (Wind and Seismic load)

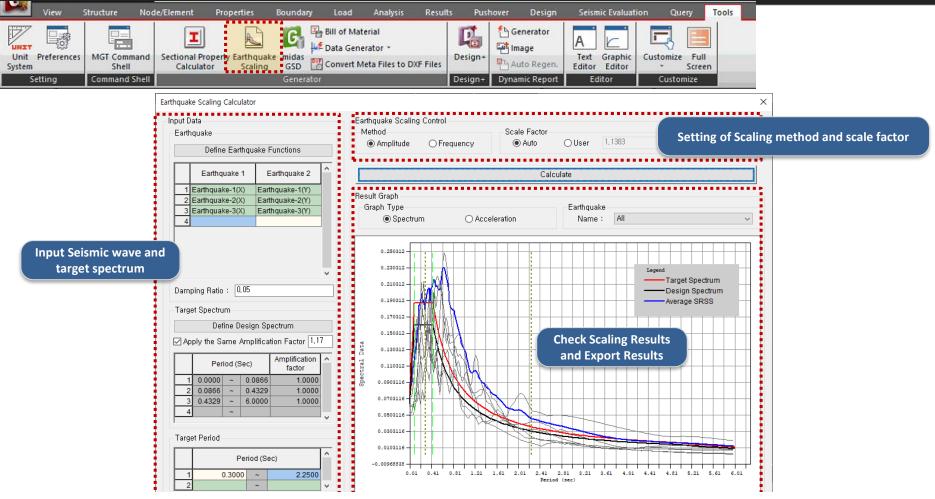
Add DPT.1301/1302-61:2018(Seismic Load)

Add/Modify Seismic Load Specification Load Case Name : EX Seismic Load Code : DPT, 1301/1302-61:2 Description : Seismic Load Parameters Region © Bangkok ORegelon except Bangkok Method © Bangkok ORegelon except Bangkok Structural Parameters Period Calculator Ortho, Direction © 1, T = 0,02 H (for RC) O,2 T = 0,03 H (for Steel) © 3, T = N + H (User Input) H <u>50</u> m N <u>0,025</u> X-Direction (Ex Y-Direction (Ex Y-Direction (Ex Y-Direction (Ex	Static seismic Load	
Seismic Load Code : DPT,1301/1302-61:2 \rightarrow Description : Image: Seismic Load Parameters Region Image: Seismic Load Parameters Seismic Zone Image: Seismic Zone Seismic Zone Image: Seismic Zone Design Spectral Acceleration Site Class Site Class Sd Design Spectral Acceleration Site Class Site Class Sd Period Coef. (Cu) 1.5 Category Importance Importance Importance Structural Parameters Period Calculator Major Direction Importance Importance Importance Structural Parameters Period Calculator Analytical Pe Major Direction Importance Importance Importance Importance Importance Importance Importance Importance Importance Importance Importance Importanc	Add/Modify Seismic Load Specification	×
Seismic Load Parameters Region	Seismic Load Code : DPT, 1301/1302-61:2 🗸	
Region Image: Construction of the second		
Seismic Zone Seismic Zone Seismic Zone Design Spectral Acceleration Site Class Sd Solution Ste Class Sd Ste Class Sd Sd Period Coef, (Cu) 1.5 Category Bission Code Sds Define Factors per DPT1301/1302-61(2018) Structural Parameter Period Calculator Major Direction In T = 0.02 H (for RC) O Analytical Pe Major Direction In T = 0.02 H (for RC) O Analytical Pe Major Direction In T = 0.02 H (for RC) O Analytical Pe Indamental Pe Response Mod Damping Ratio X-Direction : Accidental Ecc X-Direction (Ex Period Period Isec Period Isec Period Isec V-Direction (Ex	Region	lk
Site Class Sd by Code Ss 0.75 Fa 1.2 Sds 0.6 g S1 0.30 Fv 1.8 Sd1 0.36 g Period Coef, (Cu) 1.5 0.56 g	Seismic Zone	
Site Crasse Crasse Crasse Crasse Site Crasse Crasse Crasse Crasse Site Crasse File 1.2 Sds 0.6 g Site Crasse File 1.8 Sd1 0.36 g Period Coef. (Cu) 1.5 Crasse Crasse Crasse Crasse Sds D Define Factors per DPT1301/1302-61(2018) Structural Parameter Major Direction Ortho. Direction Structural Parameter Major Direction Int = 0.02 H (for RC) Ortho. Direction Ortho. Direction Structural Parameter Major Direction Int = 0.02 H (for RC) Ortho. Direction Ortho. Direction Structural Parameter Major Direction Int = 0.02 H (for RC) Ortho. Direction Ortho. Direction Structural Parameter Major Direction Int = 0.02 H (for Steel) O.3 T = N + H (User Input) O.3 T = N + H (User Input) H 50 m N 0.025 N N 0.025 X-Direction (Ex Period I sec Period I sec OK Cancel	Design Spectral Acceleration	
St 0.30 Fv 1.8 Sd1 0.36 g Period Coef, (Cu) 1.5	Site Class Sd 🗸 Sd	ode
Risk Category III Importance 1.00 Seismic Design Steagen Sds D Define Factors per DPT1301/1302-61(2018) Structural Parameter Analytical Pe Image: Approximate Fundamental Pe Fundamental Pe Pamping Ratio Damping Ratio X-Direction (Ex Y-Direction (Ex Y-Direction (Ex	S1 0.30 V Fv 1.8 Sd1 0.3	
Sds D Define Factors per DPT1301/1302-61(2018) Structural Parameter O Analytical Period Calculator Major Direction Image: Approximate Fundamental Period Calculator Pariod Calculator Image: Color Calculator Damping Ratio Seismic Load D X-Direction (Ex V-Direction (Ex Period Define Factors per DPT1301/1302-61(2018) Major Direction Major Direction Image: Optimized Parameter Period Calculate Period Image: Optimized Parameter Parameter Parameter Parameter Period Calculate Period Period Period Period Peri	Risk Category	
Period Calculator \bigcirc Analytical Pe $\textcircled{Major Direction}$ $Major $	Sds D Define Factors per D	OPT1301/1302-61(2018)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Fundamental Pe O.2, T = 0.03 H (for Steel) Response Mod O.3, T = N + H (User Input) Damping Ratio H Seismic Load D N X-Direction : Calculate Accidental Ecc Period X-Direction (Ex Period Y-Direction (Ex OK	O As shall be	
Response Mod Damping Ratio O.3, T = N + H (User Input) Mathematical Service O.3, T = N + H (User Input) H 50 m N Seismic Load E O.025 X-Direction : I Calculate Calculate Period 1 sec Y-Direction (Ex Period V-Direction (Ex OK		I, T = 0,02 H (for RC)
Damping Ratio H 50 m Seismic Load I N 0.025 X-Direction : I Accidental Ecc X-Direction (Ex Y-Direction (Ex Y-Direction (Ex		-
H Sum H Sum Seismic Load C N 0.025 N 0.025 X-Direction : I Calculate Calculate Calculate Accidental Ecct Period I sec Period I sec Y-Direction (Ex V-Direction (Ex OK Cancel		○ 3, T = N + H (User Input)
X-Direction : Image: Calculate Accidental Ecci X-Direction (Ex Y-Direction (Ey Period 1 sec Period 0K Cancel	H 50 m	
Accidental Ecc X-Direction (Ex Y-Direction (Ey Y-Direction (Ey	N CIOLO	
X-Direction (Ex Period 1 sec Y-Direction (Ey OK Cancel	Calculate	Calculate
UK Cancel	X-Direction (Ex Period 1 sec	Period 1 sec
Toroional Ampli	Torsional Amplinearon	OK Cancel

7. Addition of Thailand DB(TIS for SI,MKS)

Add Concrete/Rebar DB and material as per TIS(for SI,MKS Unit system)

Set Rebar Material			Concrete strength as	per TIS
Preferences	×		Material Data	×
Environment General View Data Tolerances Property Load Code Steel Design Code: AlSC(15th)-LRFL National Annex: Design/Code: National Annex: Design/Code: Steel Design/Code: AlsC(15th)-LRFL National Annex: Design/Code: National Annex: Design/Code: Steel Design/Code: Steel Design/Code: Steel Design/Code: Steel Design/Code: AlsC(15th)-LRFL National Annex: Design/Code: Steel Steel Steel Design/Code: Steel Steel	Material Code	9B as per TIS & Design rebai	General Material ID 7 Name Elasticity Data Type of Design Concrete Steel Stand DE Produ Conc Stand Conc Stand	ard
Recommended SD40 SD40 SD50	Rebar Code TIS(MKS)	ype of Material SIsotropic Orthotropic DE	Code
Save Changes Upon OK Default All Set Default	OK Cance DB6	Dia Area Dia(Out) (mm) (mm²) (mm) 6.0000 22.2000 6.0000	teel (tonf/mm) // teel odulus of Elasticity : 0,0000e+00 N/mm ²	
Debes stress these year TIC	□ DB8 □ DB8 □ DB10 □ DB12 □ DB16 □ DB16 □ DB16	8.0000 39.5000 8.0000 10.0000 61.6000 10.0000 12.0000 88.8000 12.0000 16.0000 157.8000 16.0000 20.0000 246.6000 20.0000	0.0000 hermal Coefficient : 0.0000e+00 1/[C] 0.0000 eight Density : 0 N/mm* 0.0000 Use Mass Density: 0 N/mm*/ 0.0000 Concrete	C 150 C 180 C210 C240 C250 C300 C400 C500 C600 C600 C600 C700
Rebar strength as per TIS		22.0000 298.4000 22.0000 25.0000 385.3000 25.0000	0.0000 odulus of Elasticity : 2,1324e+09 N/mm ² 0.0000 pisson's Ratio : 0,2	C600 C650 C700
0	Strength 0823 (KSC) 0832	23.0000 383.3000 23.0000 28.0000 483.4000 28.0000 32.0000 631.3000 32.0000 36.0000 799.0000 36.0000	0.0000 hermal Coefficient : 1.0000e-05 1/[C] 0.0000 eight Density : 2.354e-05 N/mm³	
SR 24 385 235 24	2400 DB40	40.0000 986.5000 40.0000	0.0000	J
SD 30 480 295 30	3000 RB6	6.0000 22.2000 6.0000 8.0000 39.5000 8.0000	0.0000 asticity Data	
SD 40 560 390 40	4000 RB9	9.0000 49.9000 9.0000	0.0000	
SD 50 620 490 50	5000 RB10	10.0000 61.6000 10.0000	0.0000 V Plastic Material Properties for Fiber Model	None v
		СО 2000 - СО 200	Close ermal Transfer ermal Transfer Specific Heat : 0 kcal/N- Heat Conduction : 0 kcal/mn Damping Ratio : 0.05 OK	c]

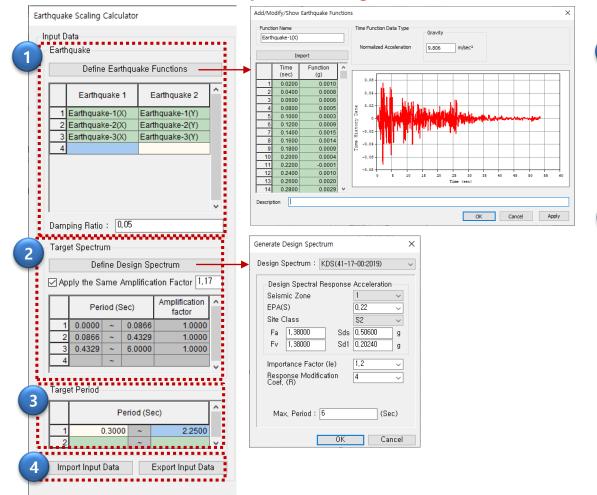


8. Addition of Indonesia DB(SNI)

Add Concrete/Rebar DB and material as per SNI

	Set Rebar Materi	al										Concrete strength as per SNI
Preferences				×							Material	Data ×
 □ Environment □ General □ View □ Data Tolerances □ Property □ Load □ Results □ Design/Load Code □ Notice & Help □ Graphics □ Output Formats □ Formats - Dim, & Others □ Formats - Loads 	Design Code Load Co Steel Design Code: [AISC(15th)-LRF[~] National Annex: Recommended ~] Cold Formed Steel Design Code: [AIK-CFSD98 ~] National Annex: [Recommended ~]	Concrete SR Design Code: ACI318M-14 National Annex: Recommended Rebar Material Code SNI(RC) Material DB BiTP 280	sign Code: K-SRC2K ~ ebar laterial Code SNI(RC) laterial DB	Rebar		tion	B as per S	NI & Desi	gn rebar	setting	Elasti Type X	rial ID 7 Name fc17 city Data of Design Concrete Standard DB Product Concrete Concrete Standard SNI(RC) Code
☑ Save Changes Upon OK	Default Al	BTF 280 BTS 280 BTS 220A BTS 420A BTS 520 BTS 550 BTS 550 BTS 700	Canc		снк	Name D6	Dia (mm) 6.0000	Area (mm²) 28.2740	Dia(Out) (mm) 6.0000	Weight (N/mm) 0.0022		Isotropic DB Icl // al fc17 fc21 ulus of Elasticity : 0.0000e+00 N/mm* fc25 fc35 fc35 fc35
R	lebar strength as p	er SNI)			D8 D10 D13 D16 D19 D22 D25	8.0000 10.0000 13.0000 16.0000 19.0000 22.0000 25.0000	50.2660 78.5400 132.7330 201.0620 283.5290 380.1340 490.8750	8.0000 10.0000 13.0000 16.0000 19.0000 22.0000 25.0000	0.0039 0.0061 0.0102 0.0155 0.0218 0.0293 0.0378	eig U: Od	and the second secon
Grade	Tensile Strength Fu (MPa)	Yield Strength Fy (MPa)		Ħ		D29 D32 D36	29.0000 32.0000 36.0000	660.5210 804.2500 1017.8780	29.0000 32.0000 36.0000	0.0508 0.0619 0.0784	eig	mal Coefficient : 1,0000e-05 1/[C] ht Density : 2,354e-05 N/mm ^a
BjTP 280	350	280		П		D40	40.0000	1256.6400	40.0000	0.0967		se Mass Density: 2.4e-09 N/mme/g
BjTS 280	350	280		Н		D50 D54	50.0000 54.0000	1963.5000 2290.2260	50.0000 54.0000	0.1511 0.1763	sti	city Data
BjTS 420A	525	420		H		D57	57.0000	2551.7650	57.0000	0.1964	ast	ic Material Name NONE ~
BjTS 420B	525	420									V	stic Material Properties for Fiber Model
BjTS 520	650	520		,					OK	Close		rrete None v Rebar None v
BjTS 550	687.5	550										nal Transfer
BjTS 700	805	700										ific Heat : 0 kcal/N·[C] Conduction : 0 kcal/mm·hr·[C]
												ing Ratio : 0.05 OK Cancel Apply

9. Earthquake Scaling Calculator



-Function : Scaling so that the average of the SRSS spectrum of the input seismic wave is greater than or equal to the target spectrum for the target period

9. Earthquake Scaling Calculator

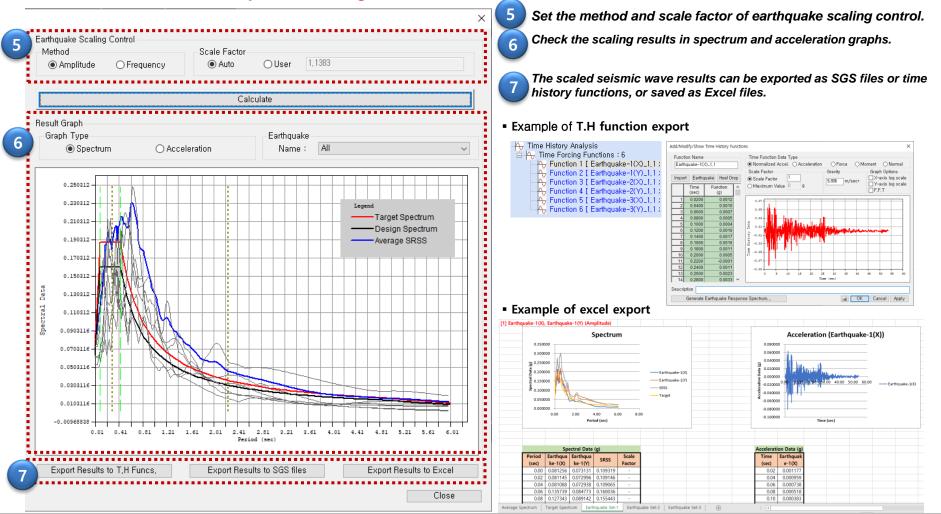
-Tools > Generator > Earthquake Scaling

Enter seismic wave information considering the conditions of the ground where the structure is located. Import seismic waves saved as SGS files or copy and paste input data into Excel format.

Set the design response spectrum according to the standard and input the magnification of the target spectrum. When inputting the design response spectrum, a certain section of acceleration is automatically divided

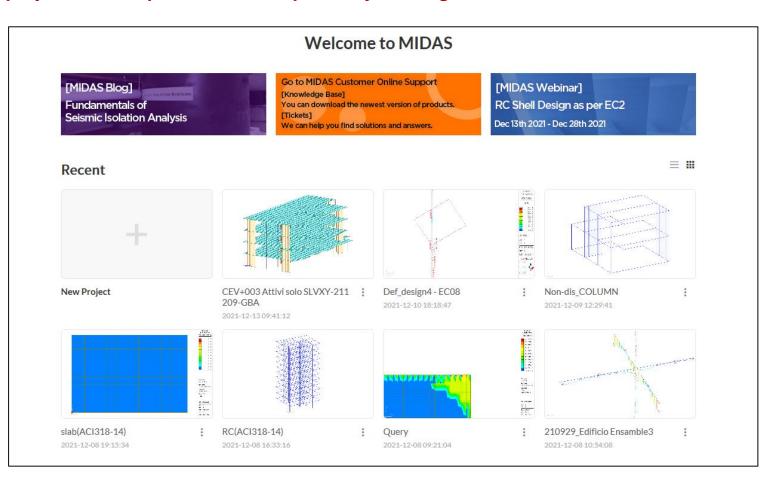
Set the scaling target period.

3


2

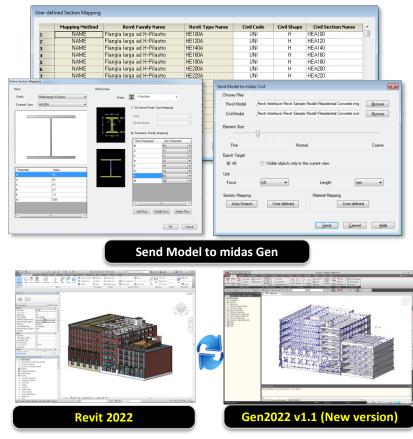
Import and export input data as wzd files.

9. Earthquake Scaling Calculator


-Tools > Generator > Earthquake Scaling

10. Preview function of Start Page

-You can see the latest news of midas program in banner. -Recent projects can be previewed and opened by clicking on the list.



11. Revit 2022 Interface

Gen-Revit Linker

- File > Import > midas Gen MGT File
- File > Export > midas Gen MGT File

	Functions	Revit <> Gen
	Structural Column	\diamond
	Beam	<>
Linear	Brace	<>
Elements	Curved Beam	>
	Beam System	>
	Truss	>
	Foundation Slab	<>
	Structural Floor	<>
Planar	Structural Wall	<>
Elements	Wall Opening & Window	>
	Door	>
	Vertical or Shaft Opening	>
Boundary	Offset	>
	Rigid Link	>
	Cross-Section Rotation	>
	End Release	>
	Isolated Foundation Support	>
	Point Boundary Condition	>
	Line Boundary Condition	>
	Wall Foundation	>
	Area Boundary Condition	>
Load	Load Nature	>
	Load Case	>
	Load Combination	>
	Hosted Point Load	>
	Hosted Line Load	>
	Hosted Area Load	>
Other	Material	<>
Parameters	Level	>