



Benchmarking Pulsar and Kafka 
- The Full Benchmark Report 

(2020 Edition) 



Sijie Guo, Apache Pulsar PMC, CEO and Co-Founder of StreamNative

Penghui Li, Apache Pulsar PMC, Platform Engineering Lead of StreamNative




Benchmarking Pulsar and Kafka - 2020 Edition

Introduction

Having identified multiple issues in Confluent’s approach to evaluating various 
performance factors, we decided to repeat their benchmark on Pulsar and Kafka with 
some adjustments. We wanted to improve the accuracy of the test to facilitate more 
meaningful comparisons between the two systems. We also wanted to get a more 
comprehensive view, so we broadened the scope of our test to include additional 
performance measures and simulated real-world scenarios.


Our benchmark repeated Confluent’s original tests with the appropriate corrections and 
included all the durability levels supported by Pulsar and Kafka. As a result, we were 
able to compare throughput and latency at equivalent levels of durability. In addition, we 
benchmarked new performance factors and conditions, such as varying numbers of 
partitions, subscriptions, and clients. We also emulated real-world use cases by testing 
mixed workloads containing writes, tailing-reads, and catch-up reads.


In this report, we describe the tests we performed in detail and share our results and 
conclusions.


Content

I. Maximum Throughput Test


A. 100 partitions, 1 subscription, 2 producers and 2 consumers


B. 2000 partitions, 1 subscription, 2 producers and 2 consumers


C. 1 partition, 1 subscription, 2 producers and 2 consumers


D. 1 partition, 1 subscription, 1 producer and 1 consumer


II. Publish and End-to-End Latency Test


A. 100 partitions, 1 subscription


B. 100 partitions, 10 subscriptions


C. 100, 5000, 8000, 10000 partitions


III. Catch-up Read Test


IV. Mixed Workload Test


V. Conclusions


I. Maximum Throughput Test

The following is the test setup.


© 2020 StreamNative, Inc 2



Benchmarking Pulsar and Kafka - 2020 Edition

We designed this test to determine the maximum throughput Pulsar and Kafka can 
achieve when processing workloads that consist of publish and tailing-reads. We varied 
the number of partitions to see how each change impacted throughput. Our test strategy 
included the following principles and expected guarantees:


• Each message was replicated three times to ensure fault tolerance.


• We varied the number of acknowledgements to determine the maximum 
throughput of each system under various replication durability guarantees.


• We enabled batching for Kafka and Pulsar, batching up to 1 MB of data for a 
maximum of 10 ms.


• We tested varying numbers of partitions—specifically, 1, 100, and 2000—to 
measure the maximum throughput for each condition.


• When benchmarking the maximum throughput for 100 and 2000 partitions, we ran 
2 producers and 2 consumers.


• When benchmarking the maximum throughput for a single partition, we varied the 
number of producers and consumers to measure changes in throughput under 
different conditions.


• We used a message size of 1 KB.


• For each scenario, we tested the maximum throughput under various durability 
levels.


The following is the result for each test.


A. 100 partitions, 1 subscription, 2 producers and 2 consumers 
Our first test benchmarked maximum throughput on Pulsar and Kafka with 100 
partitions under two different durability guarantees. We used one subscription, two 
producers, and two consumers for each system. Our test results are described below.


• When configured to provide Level-1 durability guarantees (sync replication 
durability, sync local durability), Pulsar achieved a maximum throughput of ~300 
MB/s, which reached the physical limit of the journal disk’s bandwidth. Kafka was 
able to achieve ~420 MB/s with 100 partitions. It should be noted that when 
providing level-1 durability, Pulsar was configured to use one disk as journal disk 
for writes and the other disk as ledger disk for reads, comparing to Kafka use both 
disks for writes and reads. While Pulsar's setup is able to provide better I/O 
isolation, its throughput was also limited by the maximum bandwidth of a single 
disk (~300 MB/s). Alternative disk configurations can be beneficial to Pulsar and 
allow for more cost effective operation, which will be discussed in a later blog post.


• When configured to provide Level-2 durability guarantees (sync replication 
durability, async local durability), Pulsar and Kafka each achieved a maximum 

© 2020 StreamNative, Inc 3



Benchmarking Pulsar and Kafka - 2020 Edition

throughput of ~600 MB/s. Both systems reached the physical limit of disk 
bandwidth.


Figure 1 shows the maximum throughput on Pulsar and Kafka with 100 partitions under 
sync local durability.


FIGURE 1: MAXIMUM THROUGHPUT WITH 100 PARTITIONS ON PULSAR AND KAFKA (SYNC LOCAL 
DURABILITY) 

© 2020 StreamNative, Inc 4



Benchmarking Pulsar and Kafka - 2020 Edition

Figure 2 shows the maximum throughput on Pulsar and Kafka with 100 partitions under 
async local durability.


FIGURE 2: MAXIMUM THROUGHPUT WITH 100 PARTITIONS ON PULSAR AND KAFKA (ASYNC 
LOCAL DURABILITY) 

B. 2000 partitions, 1 subscription, 2 producers and 2 consumers 
Our second test benchmarked maximum throughput using the same durability 
guarantees (acks = 2) on Pulsar and Kafka. However, we increased the number of 
partitions from 100 to 2000. We used one subscription, two producers, and two 
consumers. Our test results are described below.


• Pulsar’s maximum throughput remained at ~300 MB/s under a Level-1 durability 
guarantee and increased to ~600 MB/s under Level-2 durability.


• Kafka’s maximum throughput decreased from 600 MB/s (at 100 partitions) to ~300 
MB/s when flushing data for each message individually (kafka-ack-all-sync).


© 2020 StreamNative, Inc 5



Benchmarking Pulsar and Kafka - 2020 Edition

• Kafka’s maximum throughput decreased from ~500 MB/s (at 100 partitions) to 
~300 MB/s when using the system’s default durability settings (kafka-ack-all-
nosync).


To understand why Kafka’s throughput dropped, we plotted the average publish latency 
for each system under each durability guarantee tested. As you can see in Figure 3, 
when the number of partitions increased to 2000, Kafka’s average publish latency 
increased to 200 ms and its 99th percentile publish latency increased to 1200 ms.


FIGURE 3: MAXIMUM THROUGHPUT WITH 2000 PARTITIONS ON PULSAR AND KAFKA 

Increased publish latency can significantly impact throughput. Latency did not affect 
throughput on Pulsar because Pulsar clients leverage Netty’s powerful asynchronous 
networking framework. However, latency did impact throughput on Kafka because Kafka 
clients use synchronous implementation. We were able to improve throughput on Kafka 
by doubling the number of producers. When we increased the number of producers to 
four, Kafka achieved a throughput of ~600 MB/s.


© 2020 StreamNative, Inc 6



Benchmarking Pulsar and Kafka - 2020 Edition

Figure 4 shows the publish latency for Pulsar and Kafka with 2000 partitions.


FIGURE 4: PUBLISH LATENCY WITH 2000 PARTITIONS ON PULSAR AND KAFKA 

C. 1 partition, 1 subscription, 2 producers and 2 consumers 
Adding more brokers and partitions helps increase throughput on both Pulsar and 
Kafka. To gain a better understanding of each system’s efficiency, we benchmarked 
maximum throughput using only one partition. For this test, we used one subscription, 
two producers, and two consumers.


We observed the following:


• Pulsar achieved a maximum throughput of ~300 MB/s at all levels of durability.


• Kafka achieved a maximum throughput of ~300 MB/s under async replication 
durability, but only ~160 MB/s under sync replication durability.


© 2020 StreamNative, Inc 7



Benchmarking Pulsar and Kafka - 2020 Edition

Figure 5 shows the maximum throughput on Pulsar and Kafka with one partition under 
sync local durability.


FIGURE 5: MAXIMUM THROUGHPUT WITH 1 PARTITION ON PULSAR AND KAFKA (SYNC LOCAL 
DURABILITY) 

© 2020 StreamNative, Inc 8



Benchmarking Pulsar and Kafka - 2020 Edition

Figure 6 shows the maximum throughput on Pulsar and Kafka with one partition under 
async local durability.


FIGURE 6: MAXIMUM THROUGHPUT WITH 1 PARTITION ON PULSAR AND KAFKA (ASYNC LOCAL 
DURABILITY) 

D. 1 partition, 1 subscription, 1 producer and 1 consumer 
We benchmarked maximum throughput on Pulsar and Kafka using only one partition 
and one subscription, as in the previous test. However, for this test, we used only one 
producer and one consumer (instead of two of each).


We observed the following:


• Pulsar sustained a maximum throughput of ~300 MB/s at all durability levels.


• Kafka’s maximum throughput decreased from ~300 MB/s (in Test #3) to ~230 MB/s 
under async replication durability.


• Kafka’s throughput was dropped from ~160 MB/s (in Test #3) to ~100 MB/s under 
sync replication durability.


© 2020 StreamNative, Inc 9



Benchmarking Pulsar and Kafka - 2020 Edition

Figure 7 shows the maximum throughput Pulsar and Kafka achieved with one partition, 
one producer, and one consumer under sync local durability.


© 2020 StreamNative, Inc 10



Benchmarking Pulsar and Kafka - 2020 Edition

FIGURE 7: MAXIMUM THROUGHPUT WITH 1 PARTITION, 1 PRODUCER, 1 CONSUMER ON PULSAR 
AND KAFKA (SYNC LOCAL DURABILITY) 

To understand why Kafka’s throughput dropped, we plotted the average publish latency 
(see Figure 8) and end-to-end latency (see Figure 9) for each system under different 
durability guarantees. As you can see from the graphics below, even with just one 
partition, Kafka’s publish and end-to-end latency increased from single-digit values to 
multiple hundreds of milliseconds. Reducing the number of producers and consumers 
greatly impacted Kafka’s throughput. In contrast, Pulsar consistently offered predictable 
low single-digit latency.


FIGURE 8: PUBLISH LATENCY WITH 1 PARTITION AND 1 PRODUCER AND 1 CONSUMER ON 
PULSAR AND KAFKA (SYNC DURABILITY) 
FIGURE 9: END-TO-END LATENCY WITH 1 PARTITION, 1 PRODUCER, AND 1 CONSUMER ON 
PULSAR AND KAFKA (SYNC DURABILITY) 

© 2020 StreamNative, Inc 11



Benchmarking Pulsar and Kafka - 2020 Edition

II. Publish and End-to-End Latency Test

The following is the test setup.


The test was designed to determine the lowest latency each system can achieve when 
processing workloads that consist of publish and tailing-reads. We varied the number of 
subscriptions and the number of partitions to see how each change impacted both 
publish and end-to-end latency. Our test strategy included the following principles and 
expected guarantees:


• Each message was replicated three times to ensure fault tolerance.


• We varied the number of acknowledgments to measure variances in throughput 
using different replication durability guarantees.


• We varied the number of subscriptions (from 1 to 10) to measure latency for each.


• We varied the number of partitions (from 100 to 10000) to measure latency for 
each.


• We used a message size of 1KB.


• The producer sent messages at a fixed rate of 200000/s (~200 MB/s) and the 
tailing-read consumers processed the messages while the producer continued to 
send them.


The following is the result for each test.


A. 100 partitions, 1 subscription 
We started with 100 partitions and 1 subscription to benchmark the lowest latency 
Pulsar and Kafka can achieve under all different durability guarantees.


Our test showed Pulsar’s publish and end-to-end latency to be two to five times lower 
than Kafka’s at all levels of durability. You can see the actual test results in Table 1.


Table 1: Actual publish and end-to-end latency test results for Pulsar and Kafka 
by durability level


Publish Latency - Sync Local Durability


Figure 10 shows the differences in publish latency between Pulsar and Kafka using two 
replication durability settings (ack-1 and ack-2, respectively) and sync local durability. 
Table 2 shows the exact latency numbers for each case. As you can see, Pulsar’s 99th 

Publish Latency End-to-End Latency
Sync Local Durability Results Results

Async Local Durability Results Results

© 2020 StreamNative, Inc 12



Benchmarking Pulsar and Kafka - 2020 Edition

percentile latency is three times lower than Kafka’s under async replication durability 
(ack-1) and five times lower under sync replication durability (ack-2).





FIGURE 10: PUBLISH LATENCY ON PULSAR AND KAFKA (WITH DATA SYNC) 

Table 2: Actual publish latency test results on Pulsar and Kafka (with data sync)


To gain a better understanding of how latency changes over the time, we plotted the 
99th percentile publish latency for Pulsar and Kafka using various replication durability 
settings. As you can see in Figure 11, Pulsar’s latency stayed consistent (~5 ms) but 
Kafka’s latency was spiky. Stable and consistently low latency is crucial to mission-
critical services.


Average P50 P90 P99 P999
pulsar-ack-1 3.23 3.21 4.23 4.73 5.89
pulsar-ack-2 3.64 3.42 4.47 10.37 32.74
kafka-ack-1 2.54 1.99 3.78 11.37 18.71
kafka-ack-all 9.84 5.71 19.7 58.83 164.20

© 2020 StreamNative, Inc 13



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 11: 99TH PERCENTILE PUBLISH LATENCY ON PULSAR AND KAFKA 

End-to-End Latency - Sync Local Durability


Figure 12 shows the differences in end-to-end latency between Pulsar and Kafka using 
two replication durability settings (ack-1 and ack-2, respectively) and sync local 
durability. Table 3 shows the exact latency numbers for each case. As you can see, 
Pulsar’s 99th percentile end-to-end latency was three times lower than Kafka’s under 
async replication durability (ack-1) and five times lower under sync replication durability 
(ack-2).


© 2020 StreamNative, Inc 14



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 12: END-TO-END LATENCY WITH 1 SUBSCRIPTION ON PULSAR AND KAFKA (WITH DATA 
SYNC) 

Table 3: Actual end-to-end latency test results with 1 subscription on Pulsar and 
Kafka (with data sync)


Publish Latency - Async Local Durability


Figure 13 shows the differences in publish latency between Pulsar and Kafka using two 
replication durability settings (ack-1 and ack-2, respectively) and async local durability. 
Table 4 shows the exact latency numbers for each case. As you can see, Kafka 
performed better in the async replication durability (ack-1) case. But Pulsar’s 99th 
percentile publish latency stayed consistent (below 5 ms) and increasing the replication 
durability guarantee (from ack-1 to ack-2) did not impact latency. However, Kafka’s 99th 

Average P50 P90 P99 P999
pulsar-ack-1 4.32 4.41 5.35 5.86 7.65
pulsar-ack-2 4.72 4.65 5.60 11.64 33.90
kafka-ack-1 6.23 4.91 9.08 18.75 91.74
kafka-ack-all 12.89 7.53 23.07 64.62 169.83

© 2020 StreamNative, Inc 15



Benchmarking Pulsar and Kafka - 2020 Edition

percentile publish latency with sync replication durability (ack-2) was much higher than 
Pulsar’s.





FIGURE 13: PUBLISH LATENCY ON PULSAR AND KAFKA (WITHOUT DATA SYNC) 

Table 4: Actual publish latency test results on Pulsar and Kafka (without data 
sync)


To gain a better understanding of how publish latency changes over the time, we plotted 
the 99th percentile publish latency for Pulsar and Kafka under various replication 
durability settings. As you can see in Figure 14, Pulsar’s latency stayed consistently low 
(below 5 ms) and Kafka’s was about two times of Pulsar’s with sync replication 
durability.


Average P50 P90 P99 P999
pulsar-ack-1 2.81 2.79 3.8 4.21 5.45
pulsar-ack-2 2.99 2.97 3.96 4.47 6.19
kafka-ack-1 1.74 1.62 2.60 3.06 9.91
kafka-ack-all 3.01 2.77 3.97 8.47 15.57

© 2020 StreamNative, Inc 16



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 14: 99TH PERCENTILE PUBLISH LATENCY ON PULSAR AND KAFKA UNDER VARIOUS 
REPLICATION DURABILITY SETTINGS 

End-to-End Latency - Async Local Durability


Figure 15 shows the differences in end-to-end latency between Pulsar and Kafka under 
two replication durability settings (ack-1 and ack-2, respectively) and async local 
durability. Table 5 shows the exact latency numbers for each case. As you can see, 
Pulsar performed consistently better than Kafka in all cases. Pulsar’s 99th percentile 
end-to-end latency stayed consistent (~ 5 ms) and varying the replication durability 
setting had no impact. Kafka’s 99th percentile end-to-end latency was 1.5 times higher 
than Pulsar’s for ack-1 and 2 times higher for ack-2.


© 2020 StreamNative, Inc 17



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 15: END-TO-END LATENCY WITH 1 SUBSCRIPTION ON PULSAR AND KAFKA (WITHOUT 
DATA SYNC) 

Table 5: Actual end-to-end latency test results with 1 subscription on Pulsar and 
Kafka (without data sync)


B. 100 partitions, 10 subscriptions 
Once we understood how Pulsar and Kafka performed with just one subscription, we 
wanted to see how varying the number of subscriptions affected publish and end-to-end 
latency. So, we increased the number of subscriptions from 1 to 10 and assigned 2 
consumers to each subscription.


As you can see from the details in Table 6, our test results showed the following:


Average P50 P90 P99 P999
pulsar-ack-1 3.96 3.99 4.90 5.33 7.93
pulsar-ack-2 4.06 4.17 5.08 5.55 8.52
kafka-ack-1 4.26 4.10 5.39 6.94 17.24
kafka-ack-all 4.22 3.96 5.19 10.43 18.95

© 2020 StreamNative, Inc 18



Benchmarking Pulsar and Kafka - 2020 Edition

• Pulsar’s 99th percentile publish and end-to-end latency stayed between 5 and 10 
ms.


• Kafka’s 99th percentile publish and end-to-end latency were greatly impacted by 
increasing the number of subscriptions and went up to multiple seconds.


Table 6: Publish and end-to-end latency test results with 10 subscriptions


Publish Latency: Sync Local Durability


Figure 16 shows the differences in publish latency between Pulsar and Kafka under two 
replication durability settings (ack-1 and ack-2, respectively) and sync local durability. 
Table 7 shows the exact latency numbers for each case. As you can see, Pulsar’s 99th 
percentile publish latency was still three times lower than Kafka’s under async 
replication durability (ack-1). But under sync replication durability (ack-2), Pulsar’s 
publish latency was 160 times lower than Kafka’s (as compared to 5 times lower with 
only one subscription).





FIGURE 16: PUBLISH LATENCY WITH 10 SUBSCRIPTIONS ON PULSAR AND KAFKA (WITH DATA 
SYNC) 

Publish Latency End-to-End Latency
Sync Local Durability Results Results
Async Local Durability Results Results

© 2020 StreamNative, Inc 19



Benchmarking Pulsar and Kafka - 2020 Edition

Table 7: Actual publish latency test results with 10 subscriptions on Pulsar and 
Kafka (with data sync)


End-to-End Latency - Sync Local Durability


Figure 17 shows the differences in end-to-end latency between Pulsar and Kafka under 
two replication durability settings (ack-1 and ack-2, respectively) and sync local 
durability. Table 8 shows the exact latency numbers for each case. As you can see, 
Pulsar’s 99th percentile latency was 20 times lower than Kafka’s under async replication 
durability (ack-1) and 110 times lower under sync replication durability (ack-2).





FIGURE 17: END-TO-END LATENCY WITH 10 SUBSCRIPTIONS ON PULSAR AND KAFKA (WITH DATA 
SYNC) 

Average P50 P90 P99 P999
pulsar-ack-1 3.24 3.20 4.26 4.89 10.31
pulsar-ack-2 3.67 3.47 4.56 9.94 31.31
kafka-ack-1 3.14 2.39 4.39 15.07 61.29
kafka-ack-all 290.51 176.82 724.26 1593.46 2686.41

© 2020 StreamNative, Inc 20



Benchmarking Pulsar and Kafka - 2020 Edition

Table 8: Actual end-to-end latency test results with 10 subscriptions on Pulsar 
and Kafka (with data sync)


Publish Latency - Async Local Durability


Figure 18 shows the differences in publish latency between Pulsar and Kafka under two 
replication durability settings (ack-1 and ack-2, respectively) and async local durability. 
Table 9 shows the exact latency numbers for each case. As you can see, Pulsar 
outperformed Kafka significantly. Pulsar’s average publish latency was ~3 ms and its 
99th percentile latency was within 5 ms. Kafka’s performance was satisfactory under 
async replication durability (ack-1), but significantly worse under sync replication 
durability (ack-2). Kafka’s 99th percentile publish latency under sync replication 
durability was 270 times higher than Pulsar’s.





FIGURE 18: PUBLISH LATENCY WITH 10 SUBSCRIPTIONS ON PULSAR AND KAFKA (WITHOUT DATA 
SYNC) 

Average P50 P90 P99 P999
pulsar-ack-1 4.79 4.83 6.03 7.12 15.36
pulsar-ack-2 5.34 5.12 6.43 14.65 39.90
kafka-ack-1 11.36 6.65 17.12 145.10 914.19
kafka-ack-all 296.45 171.32 731.67 1599.79 2696.63

© 2020 StreamNative, Inc 21



Benchmarking Pulsar and Kafka - 2020 Edition

Table 9: Actual publish latency test results with 10 subscriptions on Pulsar and 
Kafka (without data sync)


End-to-End Latency - Async Local Durability


Figure 19 shows the differences in end-to-end latency between Pulsar and Kafka under 
two replication durability settings (ack-1 and ack-2, respectively) and async local 
durability. Table 10 shows the exact latency numbers for different cases. As you can 
see, Pulsar performed consistently better than Kafka in all cases. Pulsar’s end-to-end 
latency consistently stayed between 4 and 7 ms and varying the replication durability 
setting had no impact. Kafka’s 99th percentile end-to-end latency was 13 times higher 
than Pulsar’s for ack-1 and 187 times higher for ack-2.





FIGURE 19: END-TO-END LATENCY WITH 10 SUBSCRIPTIONS ON PULSAR AND KAFKA (WITHOUT 
DATA SYNC) 

Average P50 P90 P99 P999
pulsar-ack-1 2.86 2.82 3.86 4.46 11.18
pulsar-ack-2 3.05 3.00 4.03 4.73 10.39
kafka-ack-1 2.11 1.89 3.02 6.35 14.74
kafka-ack-all 158.04 17.63 526.91 1281.25 1956.71

© 2020 StreamNative, Inc 22



Benchmarking Pulsar and Kafka - 2020 Edition

Table 10: Actual end-to-end latency test results with 10 subscriptions (without 
data sync)


C. 100, 5000, 8000, 10000 partitions 
Having learned how varying the number of subscriptions affects publish latency in both 
Pulsar and Kafka, we wanted to vary the number of partitions and observe the effects. 
So, we increased the number of partitions in increments from 100 to 10000 and looked 
for changes.


As you can see from the details in Table 11, our test results showed the following:


• Pulsar’s 99th percentile publish latency remained stable at ~5 ms when the 
number of partitions increased.


• Kafka’s 99th percentile publish latency was greatly impacted by incremental 
increases in the number of partitions and went up to multiple seconds.


• When the number of partitions exceeded 5000, Kafka’s consumer was unable to 
keep up with the publish throughput.


Table 11: Actual publish latency test results with varying acks and durability


Ack = 1, Sync local durability


Figure 20 and Figure 21 show the differences in publish and end-to-end latency, 
respectively, between Pulsar and Kafka when varying the number of partitions under 
sync local durability and async replication durability (ack = 1).


Average P50 P90 P99 P999
pulsar-ack-1 4.51 4.47 5.60 6.84 15.77
pulsar-ack-2 4.61 4.61 5.76 6.94 14.21
kafka-ack-1 8.01 5.90 9.38 89.80 532.68
kafka-ack-all 212.77 87.72 537.85 1295.78 1971.03

Ack = 1 Ack = 2
Sync Local Durability Results Results
Async Local Durability Results Results

© 2020 StreamNative, Inc 23



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 20: PUBLISH LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 1 ACK (WITH DATA 
SYNC) 




FIGURE 21: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 1 ACK (WITH 
DATA SYNC) 

© 2020 StreamNative, Inc 24



Benchmarking Pulsar and Kafka - 2020 Edition

Table 12 shows our actual publish latency test results with varying numbers of partitions 
and one acknowledgement. Table 13 shows our actual end-to-end latency test results 
with varying numbers of partitions and one acknowledgement.


Table 12: Actual publish latency test results with varying numbers of partitions 
and 1 ack (with data sync)


Table 13: Actual end-to-end latency test results with varying numbers of 
partitions and 1 ack (with data sync)


Figure 22 shows end-to-end latency with varying numbers of partitions and one 
acknowledgment on Pulsar. Figure 23 shows end-to-end latency with varying numbers 
of partitions and one acknowledgement on Kafka.


Average P50 P90 P99 P999
kafka-100 2.54 1.99 3.78 11.37 18.71
kafka-5000 3.50 4.41 9.21 29.26 44.39
kafka-8000 8.37 5.11 20.18 40.70 69.72
kafka-10000 11.14 6.57 26.81 52.24 82.07
pulsar-100 3.23 3.21 4.23 4.73 5.89
pulsar-5000 3.35 3.30 4.34 5.03 13.96
pulsar-8000 3.67 3.67 4.89 5.61 16.07
pulsar-10000 3.42 3.37 4.48 5.36 19.20

Average P50 P90 P99 P999
kafka-100 6.23 4.91 9.08 18.75 91.74
pulsar-100 4.32 4.41 5.35 5.86 7.65
pulsar-5000 4.52 4.53 5.55 6.26 17.78
pulsar-8000 4.89 4.99 6.11 6.86 23.83
pulsar-10000 4.49 4.62 5.70 6.67 27.25

© 2020 StreamNative, Inc 25



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 22: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 1 ACK ON 
PULSAR (WITH DATA SYNC) 




FIGURE 23: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 1 ACK ON 
KAFKA (WITH DATA SYNC) 

As you can see from the figures and tables above,


© 2020 StreamNative, Inc 26



Benchmarking Pulsar and Kafka - 2020 Edition

• Pulsar’s 99th percentile publish latency remained stable at ~5 ms. Varying the 
number of partitions had no effect.


• Pulsar’s 99th percentile end-to-end latency remained stable at ~6 ms. Varying the 
number of partitions had no effect.


• Kafka’s 99th percentile publish latency degraded incrementally as the number of 
partitions increased and was 5 times higher at 10000 partitions (as compared to 
100). This was 10 times higher than Pulsar’s.


• Kafka’s 99th percentile end-to-end latency degraded incrementally as the number 
of partitions increased and was 10000 times higher at 10000 partitions (as 
compared to 100). Kafka’s 99th percentile end-to-end latency at 10000 partitions 
increased to 180 s and was 280000 times higher than Pulsar’s.


Ack = 2, Sync local durability


Figure 24 shows the differences in publish latency between Pulsar and Kafka when 
varying the number of partitions under sync local durability and sync replication 
durability (ack = 2). Table 14 shows the exact latency numbers for each case.





FIGURE 24: PUBLISH LATENCY WITH VARYING NUMBERS OF PARTITIONS AND ALL/2 ACK (WITH 
DATA SYNC) 

© 2020 StreamNative, Inc 27



Benchmarking Pulsar and Kafka - 2020 Edition

Table 14: Actual publish latency test results with varying numbers of partitions 
and all/2 ack (with data sync)


Figure 25 and Figure 26 show how varying the number of partitions affects end-to-end 
latency in Pulsar and Kafka, respectively.





FIGURE 25: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 2 ACKS ON 
PULSAR (WITH DATA SYNC) 

Average P50 P90 P99 P999
kafka-100 9.84 5.71 19.7 58.83 164.20
kafka-5000 154.50 36.86 468.75 1259.82 2017.15
kafka-8000 283.50 124.82 784.69 1742.27 2729.79
kafka-10000 259.50 96.15 731.85 1718.09 2684.28
pulsar-100 3.64 3.42 4.47 10.37 32.74
pulsar-5000 3.84 3.57 4.69 12.81 42.83
pulsar-8000 4.15 3.97 5.23 11.90 42.19
pulsar-10000 4.04 3.71 5.03 13.54 46.73

© 2020 StreamNative, Inc 28



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 26: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 2 ACKS ON 
KAFKA (WITH DATA SYNC) 

As you can see from the figures and tables above,


• Pulsar’s 99th percentile publish latency remained stable at ~10 ms. Increasing 
the number of partitions had no effect. Kafka’s 99th percentile publish latency 
degraded incrementally as the number of partitions increased and was 30 times 
higher at 10000 partitions (as compared to 100). Kafka’s 99th percentile publish 
latency at 10000 partitions increased to 1.7 s and was 126 times higher than 
Pulsar’s.


• Pulsar’s 99th percentile end-to-end latency remained stable at ~10 ms. 
Increasing the number of partitions had only a slight impact on Pulsar’s 99th 
percentile end-to-end latency. But even at 10000 partitions, it remained relatively 
low at ~50 ms.


• Kafka’s 99th percentile end-to-end latency degraded incrementally as the number 
of partitions increased. At 10000 partitions, - Kafka’s 99th percentile end-to-end 
latency increased to 200 s and was 14771 times higher than Pulsar’s.


Ack = 1, Async local durability


© 2020 StreamNative, Inc 29



Benchmarking Pulsar and Kafka - 2020 Edition

Figure 27 shows the publish latency difference between Pulsar and Kafka when varying 
the number of partitions under async local durability and async replication durability (ack 
= 1). Table 15 shows the exact latency numbers for different cases.





FIGURE 27: PUBLISH LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 1 ACK (WITHOUT 
DATA SYNC) 

Table 15: Actual publish latency test results with varying numbers of partitions 
and 1 ack (without data sync)


Average P50 P90 P99 P999
kafka-100 1.74 1.62 2.60 3.06 9.91
kafka-5000 4.13 3.05 5.20 25.32 33.86
kafka-8000 6.84 4.32 16.51 34.19 46.34
kafka-10000 8.95 5.32 22.75 41.83 59.32
pulsar-100 2.86 2.79 3.8 4.21 5.45
pulsar-5000 2.98 2.95 3.89 4.51 7.85
pulsar-8000 3.26 3.27 4.50 5.14 15.21
pulsar-10000 3.06 2.97 4.15 5.23 19.47

© 2020 StreamNative, Inc 30



Benchmarking Pulsar and Kafka - 2020 Edition

Figure 28 and Figure 29 show how varying the number of partitions affected end-to-end 
latency in Pulsar and Kafka, respectively.





FIGURE 28: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 1 ACK ON 
PULSAR (WITHOUT DATA SYNC) 




FIGURE 29: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 1 ACK ON 
KAFKA (WITHOUT DATA SYNC) 

© 2020 StreamNative, Inc 31



Benchmarking Pulsar and Kafka - 2020 Edition

As you can see from the above figures and tables,


• Pulsar’s 99th percentile publish latency remained stable at ~4 to ~5 ms. 
Increasing the number of partitions had no impact.


• Kafka’s 99th percentile publish latency degraded incrementally as the number of 
partitions increased and was 13 times higher at 10000 partitions (as compared to 
100). Kafka’s 99th percentile publish latency at 10000 partitions increased to 41 
ms and was 8 times higher than Pulsar’s.


• Pulsar’s 99th percentile end-to-end latency remained stable at ~4 to ~6 ms. 
Increasing the number of partitions had a slight impact on Pulsar’s 99.9th 
percentile end-to-end latency but, even at 10000 partitions, it stayed relatively low 
(within 24 ms).


• Kafka’s 99th percentile end-to-end latency degraded incrementally as the number 
of partitions increased. At 10000 partitions, Kafka’s 99th percentile end-to-end 
latency went up to 180 s and was 34416 times higher than Pulsar’s.


Ack = 2, Async local durability


Figure 30 shows the differences in publish latency between Pulsar and Kafka when 
varying the number of partitions under async local durability and sync replication 
durability (ack = 2). Table 16 shows the exact latency numbers for each case.





FIGURE 30: PUBLISH LATENCY WITH VARYING NUMBERS OF PARTITIONS AND ALL/2 ACK 
(WITHOUT DATA SYNC) 

© 2020 StreamNative, Inc 32



Benchmarking Pulsar and Kafka - 2020 Edition

Table 16: Actual publish latency test results with varying numbers of partitions 
and all/2 ack (without data sync)


Figure 31 and Figure 32 show how varying the number of partitions affected end-to-end 
latency on Pulsar and Kafka, respectively.





FIGURE 31: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS AND 2 ACKS ON 
PULSAR (WITHOUT DATA SYNC) 

Average P50 P90 P99 P999
kafka-100 3.01 2.77 3.97 8.47 15.57
kafka-5000 19.33 10.16 40.40 121.40 336.21
kafka-8000 138.19 42.52 385.86 1164.90 2008.28
kafka-10000 266.66 102.55 752.95 1717.83 2797.51
pulsar-100 2.99 2.97 3.96 4.47 6.19
pulsar-5000 3.13 3.10 4.17 4.98 9.45
pulsar-8000 3.44 3.44 4.64 5.36 12.92
pulsar-10000 3.32 3.24 4.39 6.18 23.10

© 2020 StreamNative, Inc 33



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 32: END-TO-END LATENCY WITH VARYING NUMBERS OF PARTITIONS WITH 2 ACKS ON 
KAFKA (WITHOUT DATA SYNC) 

As you can see:


• Pulsar’s 99th percentile publish latency remained stable at ~4 to ~5 ms. 
Increasing the number of partitions had no impact.


• Kafka’s 99th percentile publish latency degraded incrementally as the number of 
partitions increased and was 202 times higher at 10000 partitions (as compared 
to 100). At 10000 partitions, Kafka’s 99th percentile publish latency increased to 
1.7 s and was 278 times higher than Pulsar’s.


• Pulsar’s 99th percentile end-to-end latency remained stable at ~4 to ~6 ms. 
Increasing the number of partitions had a slight impact on Pulsar’s 99.9th 
percentile end-to-end latency, but it remained relatively low within 28 ms.


• Kafka’s 99th percentile end-to-end latency degraded incrementally as the number 
of partitions increased. At 10000 partitions, Kafka’s 99th percentile end-to-end 
latency increased to 200 s and was 32362 times higher than Pulsar’s.


© 2020 StreamNative, Inc 34



Benchmarking Pulsar and Kafka - 2020 Edition

III. Catch-up Read Test

The following is the test setup.


The test was designed to determine the maximum throughput Pulsar and Kafka can 
achieve when processing workloads that contain catch-up reads only. Our test strategy 
included the following principles and expected guarantees:


• Each message was replicated three times to ensure fault tolerance.


• We varied the number of acknowledgements to measure changes in throughput 
under various replication durability guarantees.


• We enabled batching on Kafka and Pulsar, batching up to 1 MB of data for a 
maximum of 10 ms.


• We benchmarked both systems with 100 partitions.


• We ran a total of four clients—two producers and two consumers.


• We used a message size of 1 KB.


At the beginning of the test, the producer started sending messages at a fixed rate of 
200 K/s. When 512 GB of data had accumulated in a queue, the consumers began 
processing. The consumers first read the accumulated data from beginning to end, and 
then went on to process incoming data as it arrived. The producer continued to send 
messages at the same rate for the duration of the test.


We evaluated how quickly each system was able to read the 512 GB of backlog data. 
We compared Kafka and Pulsar under different durability settings.


The following is the result for each test.


A. Async local durability with Pulsar’s journal bypassing feature 
enabled 
In this test, we used equivalent async local durability guarantees on Pulsar and Kafka. 
We enabled Pulsar’s new journal bypassing feature to match the local durability 
guarantee provided by Kafka’s default fsync settings.


As you can see from our results shown in Figure 33 below,


• Pulsar’s maximum throughput reached 3.7 million messages/s (3.5 GB/s) when 
processing catch-up reads only.


• Kafka’s only reached a maximum throughput of 1 million messages/s (1 GB/s).


• Pulsar processed catch-up reads 75% faster than Kafka.


© 2020 StreamNative, Inc 35



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 33: CATCH-UP READ THROUGHPUT ON PULSAR AND KAFKA (BYPASS JOURNALING) 

B. Async local durability with Pulsar’s journal bypassing feature 
disabled 
In this test, we used async local durability guarantees on Pulsar and Kafka, but disabled 
Pulsar’s journal bypassing feature.


As you can see from our results shown in Figure 34 below,


• Pulsar’s maximum throughput when processing catch-up reads reached 1.8 
million messages/s (1.7 GB/s).


• Kafka only reached a maximum throughput of 1 million messages/s (1 GB/s).


• Pulsar processed catch-up reads twice as fast as Kafka.


© 2020 StreamNative, Inc 36



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 34: CATCH-UP READ THROUGHPUT ON PULSAR AND KAFKA (WITH DATA SYNC) 

C. Sync local durability 
In this test, we compared Kafka and Pulsar under equivalent sync local durability 
guarantees.


As you can see from our results shown in Figure 35 below,


Pulsar’s maximum throughput reached 1.8 million messages/s (1.7 GB/s) when 
processing catch-up reads only. Kafka only reached a maximum throughput of 1 million 
messages/s (1 GB/s). Pulsar processed catch-up reads twice as fast as Kafka.


© 2020 StreamNative, Inc 37



Benchmarking Pulsar and Kafka - 2020 Edition




FIGURE 35: CATCH-UP READ THROUGHPUT ON PULSAR AND KAFKA (WITHOUT DATA SYNC) 

IV. Mixed Workload Test

The following is the test setup.


This test was designed to evaluate how catch-up reads affect publish and tailing-reads 
in mixed workloads. Our test strategy included the following principles and expected 
guarantees:


• Each message was replicated three times to ensure fault tolerance.


• We enabled batching for Kafka and Pulsar, batching up to 1 MB of data for a 
maximum of 10 ms.


• We benchmarked both systems with 100 partitions.


• We compared Kafka and Pulsar under different durability settings.


• We ran a total of four clients—two producers and two consumers.


• We used a message size of 1 KB.


At the beginning of the test, both producers started sending data at a fixed rate of 200 
K/s and one of the two consumers began processing tailing-reads immediately. When 
512 GB of data had accumulated in a queue, the other (catch-up) consumer began 
reading the accumulated data from beginning to end, and then went on to process 
incoming data as it arrived. For the duration of the test, both producers continued to 

© 2020 StreamNative, Inc 38



Benchmarking Pulsar and Kafka - 2020 Edition

publish at the same rate and the tailing-read consumer continued to consume data at 
the same rate.


The following is the result for each test.


A. Async local durability with Pulsar enabled bypass-journal 
feature 
In this test, we compared Kafka and Pulsar with equivalent async local durability 
guarantees. We enabled Pulsar’s new journal bypassing feature to match the local 
durability guarantee provided by Kafka’s default fsync settings.


As you can see in Figure 36 below, catch-up reads caused significant write delays in 
Kafka, but had little impact on Pulsar. Kafka’s 99th percentile publishing latency 
increased to 1-3 seconds while Pulsar’s remained steady at several milliseconds to tens 
of milliseconds.





FIGURE 36: EFFECT OF CATCH-UP READS ON PUBLISH LATENCY ON PULSAR AND KAFKA 
(BYPASS JOURNALING) 

© 2020 StreamNative, Inc 39



Benchmarking Pulsar and Kafka - 2020 Edition

B. Async local durability with Pulsar’s journal bypassing feature 
disabled 
In this test, we used async local durability guarantees on Pulsar and Kafka, but disabled 
Pulsar’s journal bypassing feature.


As you can see in Figure 37 below, catch-up reads caused significant write delays on 
Kafka, but had little impact on Pulsar. Kafka’s 99th percentile publishing latency 
increased to 2-3 seconds while Pulsar’s remained steady at several milliseconds to tens 
of milliseconds.





FIGURE 37: EFFECT OF CATCH-UP READS ON PUBLISH LATENCY ON PULSAR AND KAFKA (WITH 
DATA SYNC) 

C. Sync local durability 
In this test, we compared Kafka and Pulsar with equivalent sync local durability 
guarantees.


As you can see in Figure 38 below, catch-up reads caused significant write delays on 
Kafka, but had little impact on Pulsar. Kafka’s 99th percentile publishing latency 

© 2020 StreamNative, Inc 40



Benchmarking Pulsar and Kafka - 2020 Edition

increased to ~1.2 to ~1.4 seconds while Pulsar’s remained steady at several 
milliseconds to tens of milliseconds.





FIGURE 38: EFFECT OF CATCH-UP READS ON PUBLISH LATENCY ON PULSAR AND KAFKA 
(WITHOUT DATA SYNC) 

V. Conclusions

Below is a summary of our findings based on the results of our benchmark.


• After the configuration and tuning errors were corrected, Pulsar matched the end-
to-end latency Kafka had achieved in Confluent’s limited use case.


• Under equivalent durability guarantees, Pulsar outperformed Kafka in workloads 
that simulated real-world use cases.


• Pulsar delivered significantly better latency and better I/O isolation than Kafka in 
every test, regardless of the durability guarantee settings used or the numbers of 
subscriptions, partitions, or clients specified.


© 2020 StreamNative, Inc 41


	Introduction
	Content
	Maximum Throughput Test
	Publish and End-to-End Latency Test
	Catch-up Read Test
	Mixed Workload Test
	Conclusions

