Apache Pulsar in Action

Maximize the value of your data with
an event-driven architecture.

Devid Kjerrumgeacd
Lavoni by "rm Wt

David Kjerrumgaard g giream
Developer Advocate — ad Native

Part 1

Getting Started with Apache e Messaging system evolution

Pulsar e Why Apache Pulsar?

~ .
Y StreamNative

.
o

brief contents

PART 1 GETTING STARTED WITH APACHE PULSAR ..ccvvtteeierncescnseennenees 1

1 = Introduction to Apache Pulsar 3
2 = Pulsar concepts and architecture 38
3 = Interacting with Pulsar 68

PART 2 APACHE PULSAR DEVELOPMENT ESSENTIALS «eeeceeccesssessesconsene 95

4 = Pulsar functions 97

5 = Pulsar IO connectors 130
6 = Pulsar security 161

7 = Schema registry 191

PART 3 HANDS-ON APPLICATION DEVELOPMENT WITH
APRCHE PO AR v e e i 219

8 = Pulsar Functions patterns 221

9 = Resiliency patterns 241
10 = Dataaccess 271
11 = Machine learning in Pulsar 290
12 » Edge analytics 308

StreamNative

Messaging System Evolution

Message Broker Era

Engineers at IBM
create IBM MQ for

Enterprise Service Bus Era

Distributed Messaging Era

async distributed ActiveMQ is
computing open-sourced
1993 1998 2001 2002
JMS standard IBM App
published Connect

~ .
Y StreamNative

streamnative.io

Messaging System Evolution

Message Broker Era Enterprise Service Bus Era Distributed Messaging Era
’ Engineers at IBM
create IBM MQ for
async distributed ActiveMQ is Apache Mule
computing open-sourced open-sourced
1993 1998 2001 2002 2006 2007
JMS standard IBM App Apache Camel
published Connect open-sourced

~ .
Y StreamNative

streamnative.io

Messaging System Evolution

Message Broker Era Enterprise Service Bus Era Distributed Messaging Era
' Engineers at IBM
create IBM MQ for . .
async distributed ActiveMQ is Apache Mule dEng|Ine§rs ?tKL]'CEdeIn st”art Pulsar
computing open-sourced open-sourced evelopirg “Katka" to collect uisa
logs for Hadoop open-sourced
1993 1998 2001 2002 2006 2007 2008 2011 2016 2018
IMS standard IBM App Apache Camel Kafka Bullen e sarverces
published Connect open-sourced open-sourced

~ .
Y StreamNative

compute framework,
“Pulsar Functions”, is
introduced

streamnative.io

Apache Pulsar Era

E—

e Serverless computing framework. [Broker] L Broker | mma | Broker A St el
e Unbounded storage, multi-tiered p—— P —
architecture, and tiered-storage. 3[5“&‘522:‘] ot | ®== | oker || T~ go?a:f.'ﬁ&fg
,,, yer
e Streaming & Pub/Sub messaging
semantics. "~ Storage Layer

e Multi-protocol support

e .
) StreamNative

Why Apache Pulsar?

< >

Unified Guaranteed . .
Messaging Message Resiliency Inflm.t.e
Platform Delivery Scalability

e .
) StreamNative

.
P~

A

Use cases

StreamNative

Unified Messaging Platform

AdTech

Fraud Detection

Connected Car

loT Analytics

Microservices Development

e Pulsar Functions

e https://github.com/david-streamli

Part 2 o/pulsar-in-action

Apache Pulsar Development e https://github.com/david-streamli
o/pulsar-in-action-python

e https://github.com/david-streamli
o/pulsar-in-action-go

e .
) StreamNative

https://github.com/david-streamlio/pulsar-in-action
https://github.com/david-streamlio/pulsar-in-action
https://github.com/david-streamlio/pulsar-in-action-python
https://github.com/david-streamlio/pulsar-in-action-python
https://github.com/david-streamlio/pulsar-in-action-go
https://github.com/david-streamlio/pulsar-in-action-go

What are Pulsar Functions?

.
o

Lambda-style functions that

use Pulsar as the message bus.

Handles producer/consumer
setup

Applies user supplied business
logic against consumed
message.

StreamNative

Input topics

Topic 1

g

input

messages

output
Pulsar __ message
Function

~a

. log
. output

v

Output topic

streamnative.io

Why Pulsar
Functions?

All of this =)

.
P~

StreamNative

PulsarClient client = PulsarClient.builder().
.serviceUrl("pulsar://broker1:6650")
.build(); // Client discovers all brokers

consumer = client.newConsumer(Schema.STRING)
topic(*persistent://public/default/test_topic")
.subscriptionName("my-subscription")
.subscribe();

Producer<String> producer = client.newProducer(Schema.STRING)
topic(”persistent://public/default/test_topic")

.create();

while (true) {
Message<String> message = consumer.receive();
String result = doBusinessLogic(message);

producer.newMessage()
value(result)

.send();
consumer.acknowledge(message);

Why P u lsar '_I'he incoming_messages are passed
into the function one-by-one
Functions?

import java.util.function.Function;

Simpliﬁes to this :> public class MyFunction implements Function<String, String> {
public String apply(String input) {
return doBusinessLogic(input);

The returned value is automatically
published to the output topic

~ .
Y StreamNative

® Allow you to focus on the business
logic.

=
%& ® Eliminates boilerplate code.
Benefits of Pulsar
Functions

Handles message consumption and
publication

® No need for another processing
framework.

® Can be scaled up independently

5 St reamNati\le streamnative.io

Part 3

Hands-On Application
Development with Apache e Function Design Patterns

Pulsar

e Microservices Development

e .
Y StreamNative

Microservices Goal
& Characteristics

.
P~

StreamNative

Highly maintainable and
testable

Loosely coupled with other
services

Independently deployable

Capable of being developed by
a small team. (Two pizza rule)

Why Pulsar Functions for Microservices?

Desired Characteristic Pulsar Functions...

Highly maintainable and testable Are small pieces of code written in popular languages
such as Java, Python, or Go. They can be easily
maintained in source control repositories and tested
with existing frameworks automatically.

Loosely coupled with other services | Are not directly linked to one another. They
communicate via messages.

Independently deployable Are designed to be deployed independently.

Can be developed by a small team | Are often developed by a single developer.

Inter-service Communication Support all message patterns, using Pulsar as the
underlying message bus.

Deployment & Composition Can run as individual threads, processes, or K8s pods.
You can also deploy multiple Pulsar Functions as a
single unit using the Function Mesh.

S StreamNative streamnative.io

Event-Based
Microservices
Application

e .
o StreamNative

¥ M
- Customer
D D e LLIorer @ Notification = €«——
Service

l . Invalid Order

Topic
Emj

™M Resturant
Orqer g —_— > @ Notification
Validation Service

Customer Order Validated Order
Topic Topic
Driver ~M Order ~M
Solicitation B - @ Dispatch €——
Service Service
A
Candidate Driver Resturant Order Topics
Order Topic (One/Resturant)
Offered & Accepted
SMS Notjfications l
A 4

g o

Exercises

Code walk through of Pulsar
Function-based microservices
from the book.

e .
Y StreamNative

Order Validation Service

Payment Service

Order Validation

persistent://orders
/inbound/food-orders persistent://geograph/
= inbound/non-encoded

—

u

persistent:/ /orders/inbound/

ﬁ
persistent://payments/
inbound/pending

valid-food-orders
GeoEncodingService T

OrderValidationService persistent: / /restaurants/

inbound/unassigned

0 o @

ﬁ
persistent:/ /orders/inbound/
food-order-meta

u

e .
Y StreamNative

PaymentService OrderValidation
persistent://orders AggregatorService
J/inbound /food-orders-
0 aggregation l
OrderSolicititation ™M
Service B
persistent:/ /orders/inbound/
> Q invalid-food-orders
OrderMetaAdapter

streamnative.io

Payment
Validation

.
P~

StreamNative

persistent://payments/
inbound/paypal

= . @
persistent://payments/ D

inbound/pending Paypal
AuthorizationService

A
G persistent://payments/

persistent://payments/
inbound/processed

E’v‘j
CreditCard
e AuthorizationService

persistent://payments/
PaymentService inbound/eCheck

j eCheck
AuthorizationService

inbound/creditCard

persistent://payments/
inbound/applePay

ApplePay
AuthorizationService

PaymentAdapter

l

persistent:/ /orders/
inbound/food-orders-aggregation

O

streamnative.io

This section focuses on:

v the development of the order
validation

Live Demo v/ use case for the food delivery

application featured in the book

v/ addresses more-complex use cases
including design patterns and
resiliency.

https://github.com/david-streamlio/GottaEat

streamnative.io

e .
) StreamNative

https://github.com/david-streamlio/GottaEat

A

)
|

L

What’s Next?

Here are resources to continue your journey
with Apache Pulsar

’ . streamnative.io
) StreamNative

& StreamNative
e Academy

s Microservices
Webinar Series

Watch the full series.

e Part One: Developing Event-Driven Microservices

with Pulsar WatCh the SerieS

e Part Two: Stateful Microservices
e Part Three: Streaming Analytics Using FlinkSQL

Hosts: David Kjerrumgaard, Ioannis Polyzos, Addison
— Higham, and Tim Spann

. streamnative.io
s StreamNative

https://hubs.ly/Q010sfQC0

StreamNative
Ambassador Program 2022

Learn More

streamnative.io

e .
Y StreamNative

https://hubs.ly/Q010zydd0

o Pulsar vs. Kafka:

A More Accurate Perspective from Use

Cases and Community to Features and
Performance

Download the Whitepaper

.
o

. streamnative.io
StreamNative

https://hubs.ly/Q010sg2C0

Level up your Apache

[)
Now Available
Pulsar skills
started on your path to becoming a Pulsar expert!
Pulsar Traini

FE

Get Started with Apache Pulsar Today!

This course provides the information you need
J— started using Apache Pulsar. It covers the Pt
ApiahEPuiss fundamentals, including what it is, the benefits of using
Fundamentals compani adopting it, as well as the ke

Start Today

’.' StreamNative streamnative.io

P~

https://hubs.ly/Q010sg2C0

O @davidkjerrumgal

m https:/www.linkedin.com/in/davidk

O https://github.com/davidkj

Let’s Keep
in Touch!

Developer Advocate

m https://www.linkedin.com/in/timo
thyspann

O https://github.com/tspannhw

Timothy Spann

Developer Advocate

e .
Y StreamNative

https://www.linkedin.com/in/davidkj/
https://github.com/davidkj
https://www.linkedin.com/in/timothyspann
https://www.linkedin.com/in/timothyspann
https://github.com/tspannhw

Questions

e .
o StreamNative

