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Messaging System Evolution

Message Broker Era

Engineers at IBM
create IBM MQ for

Enterprise Service Bus Era

Distributed Messaging Era

async distributed ActiveMQ is
computing open-sourced
1993 1998 2001 2002
JMS standard IBM App
published Connect
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Messaging System Evolution

Message Broker Era Enterprise Service Bus Era Distributed Messaging Era
' Engineers at IBM
create IBM MQ for . .
async distributed ActiveMQ is Apache Mule dEng|Ine§rs ?tKL]'CEdeIn st”art Pulsar
computing open-sourced open-sourced evelopirg “Katka" to collect uisa
logs for Hadoop open-sourced
1993 1998 2001 2002 2006 2007 2008 2011 2016 2018
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compute framework,
“Pulsar Functions”, is
introduced
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Apache Pulsar Era

E—

e Serverless computing framework. [ Broker ] L Broker | mma | Broker A St el
e Unbounded storage, multi-tiered p—— P —
architecture, and tiered-storage. 3[5“&‘522:‘] ot | ®== | oker || T~ go?a:f.'ﬁ&fg
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, yer
e Streaming & Pub/Sub messaging
semantics. "~ Storage Layer

e Multi-protocol support
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Why Apache Pulsar?
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Unified Guaranteed . .
Messaging Message Resiliency Inflm.t.e
Platform Delivery Scalability
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Use cases

StreamNative

Unified Messaging Platform

AdTech

Fraud Detection

Connected Car

loT Analytics

Microservices Development



e Pulsar Functions

e https://github.com/david-streamli

Part 2 o/pulsar-in-action

Apache Pulsar Development e https://github.com/david-streamli
o/pulsar-in-action-python

e https://github.com/david-streamli
o/pulsar-in-action-go
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What are Pulsar Functions?

.
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Lambda-style functions that

use Pulsar as the message bus.

Handles producer/consumer
setup

Applies user supplied business
logic against consumed
message.

StreamNative

Input topics
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input

messages

output
Pulsar __ message
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Output topic
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Why Pulsar
Functions?

All of this =)

.
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PulsarClient client = PulsarClient.builder().
.serviceUrl("pulsar://broker1:6650")
.build(); // Client discovers all brokers

consumer = client.newConsumer(Schema.STRING)
topic(*persistent://public/default/test_topic")
.subscriptionName("my-subscription")
.subscribe();

Producer<String> producer = client.newProducer(Schema.STRING)
topic(”persistent://public/default/test_topic")

.create();

while (true) {
Message<String> message = consumer.receive();
String result = doBusinessLogic(message);

producer.newMessage()
value(result)

.send();
consumer.acknowledge(message);



Why P u lsar '_I'he incoming_messages are passed
into the function one-by-one
Functions?

import java.util.function.Function;

Simpliﬁes to this :> public class MyFunction implements Function<String, String> {
public String apply(String input) {
return doBusinessLogic(input);

The returned value is automatically
published to the output topic
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® Allow you to focus on the business
logic.

=
%& ® Eliminates boilerplate code.
Benefits of Pulsar
Functions

Handles message consumption and
publication

® No need for another processing
framework.

® Can be scaled up independently
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Part 3

Hands-On Application
Development with Apache e Function Design Patterns

Pulsar

e Microservices Development
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Microservices Goal
& Characteristics

.
P~

StreamNative

Highly maintainable and
testable

Loosely coupled with other
services

Independently deployable

Capable of being developed by
a small team. (Two pizza rule)



Why Pulsar Functions for Microservices?

Desired Characteristic Pulsar Functions...

Highly maintainable and testable Are small pieces of code written in popular languages
such as Java, Python, or Go. They can be easily
maintained in source control repositories and tested
with existing frameworks automatically.

Loosely coupled with other services | Are not directly linked to one another. They
communicate via messages.

Independently deployable Are designed to be deployed independently.

Can be developed by a small team | Are often developed by a single developer.

Inter-service Communication Support all message patterns, using Pulsar as the
underlying message bus.

Deployment & Composition Can run as individual threads, processes, or K8s pods.
You can also deploy multiple Pulsar Functions as a
single unit using the Function Mesh.

S StreamNative streamnative.io



Event-Based
Microservices
Application
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Exercises

Code walk through of Pulsar
Function-based microservices
from the book.
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Order Validation Service

Payment Service



Order Validation
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Payment
Validation
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This section focuses on:

v the development of the order
validation

Live Demo v/ use case for the food delivery

application featured in the book

v/ addresses more-complex use cases
including design patterns and
resiliency.

https://github.com/david-streamlio/GottaEat

streamnative.io
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What’s Next?

Here are resources to continue your journey
with Apache Pulsar

’ . streamnative.io
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e Academy

s Microservices
Webinar Series

Watch the full series.

e Part One: Developing Event-Driven Microservices

with Pulsar WatCh the SerieS

e Part Two: Stateful Microservices
e Part Three: Streaming Analytics Using FlinkSQL

Hosts: David Kjerrumgaard, Ioannis Polyzos, Addison
— Higham, and Tim Spann

. streamnative.io
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https://hubs.ly/Q010sfQC0

StreamNative
Ambassador Program 2022

Learn More

streamnative.io
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https://hubs.ly/Q010zydd0

o Pulsar vs. Kafka:

A More Accurate Perspective from Use

Cases and Community to Features and
Performance

Download the Whitepaper
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https://hubs.ly/Q010sg2C0

Level up your Apache

[ )
Now Available
Pulsar skills
started on your path to becoming a Pulsar expert!
Pulsar Traini

FE

Get Started with Apache Pulsar Today!

This course provides the information you need
J— started using Apache Pulsar. It covers the Pt
ApiahEPuiss fundamentals, including what it is, the benefits of using
Fundamentals compani adopting it, as well as the ke

Start Today

’.' StreamNative streamnative.io
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https://hubs.ly/Q010sg2C0

O @davidkjerrumgal

m https:/www.linkedin.com/in/davidk

O https://github.com/davidkj

Let’s Keep
in Touch!

Developer Advocate

m https://www.linkedin.com/in/timo
thyspann

O https://github.com/tspannhw

Timothy Spann

Developer Advocate
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