
Comparing Open Source and Proprietary Database
Solutions for Querying Spatio-Temporal Data:

SpaceTime vs Geomesa
Dinko Židić, Toni Mastelić

Ericsson Nikola Tesla
Split, Croatia

{dinko.zidic, toni.mastelic}@ericsson.com

Abstract—Spatio-temporal data represents a subset of high
volume multidimensional data defined by its temporal dimension,
i.e., a timestamp, as well as its (geo)spatial dimension, i.e., a
location. Growth of Internet of Things and Earth Observation use
cases that produce and utilize such data revealed that traditional
relational databases as well as noSQL databases are not adequate,
hence creating a demand for novel solutions. Recent studies
that cover several spatio-temporal databases highlight Geomesa
as the most prominent solution. The purpose of this paper is
to expand the previous studies by executing performance and
scalability benchmarks in order to compare Geomesa with a
proprietary solution from Mireo, namely SpaceTime database.
Performance benchmarks are used to evaluate the impact of
data clustering and indexing techniques on response time, while
scalability benchmarks are used to evaluate database distribution
and resource usage. Results indicate that SpaceTime outperforms
Geomesa in almost all benchmarks due to better CPU and
memory utilization and resilience to slower network speeds,
except the case when running on hard drive.

Index Terms—spatio-temporal data, databases, benchmarking,
Geomesa, SpaceTime

I. INTRODUCTION

Spatio-temporal data is part of high-volume multidimen-
sional data defined by a temporal dimension (timestamp), as
well as a spatial dimension (location) [1]. Internet of Things
[2] and Earth Observation [3] use cases produce and utilize
such data for tackling problems such as global warming,
earthquakes, urban planing, modern transportation, health care,
agriculture and many more [1].

Classic relational databases along with noSQL databases
are not adequate to handle such data types due to their high
volume and multidimensional characteristics [1]. On one hand,
handling spatio-temporal data is not straightforward due to the
complexity of the data structures that require careful analysis
of dimensions, together with the representation and manipula-
tion of the data [4]. Therefore, its structural organisation and
indexing technique are the most important factors that affect
access performance to raw data [5]. Consequently, the main
thing is to select a good indexing technique with low space
requirements and accomplish optimal storage data clustering
[5]. On the other hand, the scalability is highly affected by
the clustering of high volume data due to the requirements for
large storage space [2]. To fulfill those requirements spatio-
temporal databases are commonly distributed to compensate

single nodes inefficiency due to lack of parallelism, scalability
and I/O bottleneck [1].

Simplest approach to index multidimensional data is uti-
lizing spatial indexing techniques as crude form of spatio-
temporal indexing, where time is treated as a new dimension,
while other more complicated indexing techniques are only
extensions of existing spatial methods [5]. Tamas Abraham
and John F. Roddick [5] survey covers detailed concepts of
spatio-temporal databases, including data indexing techniques.
Furthermore, DataReply [6] performed benchmarks of multi-
ple big data technologies for ingesting and querying spatio-
temporal datasets. All benchmarked technologies are open-
source, namely: Hive, MongoDB, GeoSpark, Elasticsearch,
Geomesa and Postgres-XL. The benchmarks utilize three
datasets with results including query and ingest performance,
along with setup and configuration, infrastructure complexity,
community support, monitoring tools availability and com-
plexity of implementing geospatial queries. Moreover, along
with spatial, temporal and spatio-temporal queries named as
simple queries, string queries and complex queries are also
used. From their performance results it is noticeable that
Geomesa outperforms all other open-source solutions.

The goal of this study is to expand on DataReply survey to
include proprietary solutions, hence by comparing the perfor-
mance of querying two spatio-temporal databases, namely Ge-
omesa and SpaceTime. Former is an already mentioned open
source solution developed by LocationTech and is considered
state-of-the-art in the context of spatio-temporal databases,
while latter is a proprietary solution developed by Mireo.
Comparison is done by performing multiple performance
benchmarks to evaluate the impact of indexing methods and
data clustering on query response times. Additionally, scala-
bility benchmarks are performed to test databases distribution
and resource usage impact.

Results show that SpaceTime outperforms Geomesa in all
benchmarks with response times in range of seconds compared
to Geomesa’s minutes. It exhibits better CPU and memory
utilization due to superior caching capabilities, as well as the
resilience to slower network speeds. The only case where
Geomesa outperforms SpaceTime is when running on hard
drive (HDD), specifically with smaller amounts of memory
where SpaceTime is unable to utilize its caching capabilities.



Fig. 1: Dataset spatial distribution heatmap

II. METHODOLOGY AND SETUP

Two spatio-temporal databases benchmarked in this paper
include Geomesa and SpaceTime. Both of them represent
solutions for handling spatio-temporal data, where former is
an open-source solution developed by LocationTech without
any known hard requirements, while latter is a proprietary
solution developed by Mireo with hard requirements for solid
state disk (SSD) and gigabit network. Their performance is
tested with two groups of benchmarks. First group includes
performance benchmarks that contain different sets of spatial,
temporal and spatio-temporal queries used to test database
indexing technique and data clustering, namely:

• Spatial benchmarks utilize only spatial queries to test
spatial indices and spatial data clustering.

• Temporal benchmarks utilize only temporal queries to
test temporal indices and temporal data clustering.

• Spatio-temporal benchmarks utilize spatio-temporal
queries to test both spatial and temporal indices.

Second group includes scalability benchmarks used to test
databases distribution and resource usage, namely:

• Data scalability benchmarks utilize spatio-temporal
queries for a variety of dataset sizes to test how database
performance scales with regards to data volumes.

• Resource scalability benchmarks utilize spatio-
temporal queries while running in various environments
to test how databases perform with different CPU,
memory, network and disk configurations.

A. Dataset

Dataset used in this study contains an anonymized telecom
data from arbitrary base stations with a total of 1 162 400 595
records. The data is non-uniformly spatially and temporally
distributed across Croatia with the timespan of 43 days as
depicted in Figure 1 and Figure 2, respectively. Figure 1 shows
that the most records are located over settlements, with the
highest data density in city of Rijeka and Istria. Similarly,
Figure 2a shows the temporal data distribution with the highest
density during four specific days.

B. Configuration

Both databases are deployed on top of two virtual machines
running on separate physical workstations, each virtual ma-
chine initially being configured with a configuration displayed
in Table I.

0

200

400

600

D
at

a 
vo

lu
m

e 
[r

ec
o

rd
s]

Thousands

(a) Whole dataset between 08/06/2018 19:12 and 20/07/2018 19:12

0

200

400

600

D
at

a 
vo

lu
m

e
 

[r
ec

o
rd

s]

Thousands

(b) One day between 09/06/2018 01:52 and 10/06/2018 01:52

Fig. 2: Dataset temporal distribution in minutes

The initial configuration is used for most benchmarks,
except the resource related benchmarks where resources are in-
tentionally reconfigured to study the performance on different
resource configurations. SpaceTime is installed on top of De-
bian 9.11, while Geomesa is installed as a plugin to Accumulo
database with Zookepeer and Hadoop as a coordinator and a
backend, respectively, all running inside their own unlimited
Docker containers on Ubuntu 20.04. Queries are executed from
a separate machine using Scala scripts, where SpaceTime is
accessed through its REST API, while Geomesa is accessed
through GeoTools Java library. Both databases are indexed by
their space and time data features.

TABLE I: Physical workstation initial configuration

Resource type Capacity

CPU 12 cores (out of 16 cores)
RAM 96 GB (out of 120 GB)
DISK 500 GB SSD NVMe (out of 1 TB)
NETWORK Gigabit

C. Queries

Several types of queries are used for benchmarking the
database performances, including:

• Temporal queries request a set of data based on a time
interval.

• Spatial queries request a set of data based on its location
defined with geo-coordinates.

• Spatio-temporal queries request a set of data based on
both time interval and a location.

Depending on a specific benchmark, above mentioned
queries are executed as:

• Count – a database simply counts a set of data and
returns a single integer.

• Fetch – a database fetches a set of data and returns the
data itself over the network.

Each query is repeated 5 to 10 times in order to obtain
statistically meaningful average values, as well as the deviation
in performance for a specific query/configuration. Most of the
obtained results are shown as distribution of data into quartiels,
asserting mean value and outliers.



(a) Spatial COUNT (b) Temporal COUNT

(c) Spatial FETCH (d) Temporal FETCH

Fig. 3: Performance of spatial and temporal benchmarks

III. PERFORMANCE BENCHMARKS

This section presents the results of all mentioned perfor-
mance benchmarks from Section II.

A. Spatial benchmark

Spatial benchmarks utilize spatial queries that either count
or fetch approximately 1 million records for various geo-
locations in order to test the performance of a database
with regards to the geo-location being queried. A single test
includes 9 geo-locations, where each test is repeated 10 and 5
times for count and fetch queries, respectively, which results
with 135 queries being executed per database.

Figures 3a and 3c depict that SpaceTime performs better
than Geomesa, as well as having more stable response times
with lower deviation. However, they both follow a similar
performance pattern with regards to the geo-location being
queried.

B. Temporal benchmark

Temporal benchmarks utilize temporal queries that either
count or fetch sequentially increasing datasets by increasing
the requested time span. A single test includes 10 queries,
where each query increases a requested time span by 1 minute,
thus going from 1 to 10 minutes. Again, each test is repeated
10 and 5 times for count and fetch queries, respectively, which
results with 150 queries per database.

Figures 3b and 3d depict that SpaceTime again performs
better than Geomesa. For fetch queries it exhibits more stable
performance, while Geomesa also gives more steeper increase
in response time. However, for count queries, while giving
better performance, SpaceTime gives steeper increase in re-
sponse times unlike Geomesa’s almost flat performance. More
insights into this behaviour is given in Figure 4.

In Figure 4, it can be clearly seen that SpaceTime outper-
forms Geomesa by in average 8 times faster response time
over a time span of 12 days. On one hand, SpaceTime gives
an expected behavior by exhibiting longer response times as
the requested time span increases, due to the fact that longer

0.1

0.4

1.6

6.4

25.6

102.4

409.6

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

0
0

:0
1

:0
0

0
0

:0
2

:0
0

0
0

:0
3

:0
0

0
0

:0
4

:0
0

0
0

:0
5

:0
0

0
0

:0
6

:0
0

0
0

:0
7

:0
0

0
0

:0
8

:0
0

0
0

:0
9

:0
0

0
0

:1
0

:0
0

0
0

:2
0

:0
0

0
0

:3
0

:0
0

0
0

:4
0

:0
0

0
0

:5
0

:0
0

0
1

:0
0

:0
0

0
2

:0
0

:0
0

0
3

:0
0

:0
0

0
4

:0
0

:0
0

0
8

:0
0

:0
0

1
2

:0
0

:0
0

1
 d

ay
, 0

:0
0

:0
0

2
 d

ay
s,

 0
:0

0
:0

0

3
 d

ay
s,

 0
:0

0
:0

0

4
 d

ay
s,

 0
:0

0
:0

0

8
 d

ay
s,

 0
:0

0
:0

0

1
2

 d
ay

s,
 0

:0
0

:0
0

D
at

a 
vo

lu
m

e 
[r

o
w

s]
 lo

ga
ri

tm
ic

Millions

R
es

p
o

n
se

 t
im

e 
[s

ec
] 

lo
ga

ri
tm

ic

Time period [dd, hh:mm:ss]

Volume SpaceTime SpaceTime (within box) Geomesa Geomesa (within box)

Fig. 4: Performance with regards to a longer time span

time span equals more data. On the other hand, Geomesa
exhibits almost flat performance on some sequential queries,
regardless of the larger amount of data that it needs to process
with every next query (also seen in Figure 3b and 3d). This
can be explained by the way Geomesa indexes its data by
the temporal feature, where some temporally related data falls
into favorable buckets and thus do not affect the performance
in a significant manner, while SpaceTime indexes spatial and
temporal features with a single weighted index and thus gives
more balanced performance.

Figure 4 also depicts the results (dashed lines) of spatio-
temporal queries that request the same data as their temporal
counterparts. This was achieved by requesting the same time
span, while providing a bounding box size of Croatia in order
to cover all the data spatially. The results show that Geomesa
improves its performance with such queries for smaller time
spans and deteriorates for larger time spans. Similar behavior
is exhibited by SpaceTime as well, while altogether giving
better performance than Geomesa.

C. Spatio-temporal benchmark

Spatio-temporal benchmarks utilize spatio-temporal queries
that either count or fetch sequentially increasing datasets. The
datasets are increased by increasing the requested time span,
while a spatial feature remains the same. The time span is
increased 7 times in a manner to provide approximately the
same amount of data for each geo-location, rather than the
same time span. Consequently, each test contains 56 queries,
namely 7 different time spans for 8 different geo-locations.
Altogether, each database is benchmarked with 616 queries.

Figures 5a and 5b depict results for count queries where
SpaceTime outperforms Geomesa. On one hand, SpaceTime
also exhibits more stable performance independent from the
specific geo-location, rather its performance is almost entirely
dependent on the amount of data being requested. On the
other hand, Geomesa shows significant dependence on a geo-
location such as Zagreb, which increases the response times
over 5 seconds regardless of the same amount of data being
requested as with other queries.



0

0.2

0.4

0.6

0.8

1

R
es

p
o

n
se

 t
im

e 
[s

ec
]

(a) SpaceTime COUNT

0

0.5

1

1.5

2

(b) Geomesa COUNT

0

5

10

0 400 800 1200 1600R
es

p
o

n
se

 t
im

e 
[s

ec
]

Data volume [thousands]

Zagreb

(c) SpaceTime FETCH

0

10

20

30

40

0 400 800 1200 1600

Data volume [thousands]
Zagreb

(d) Geomesa FETCH

Fig. 5: Performance of spatio-temporal benchmarks

Figures 5c and 5d depict database performance for fetch
queries. Obviously, these take more time than count queries
as they send requested data over the network. However, the
performance impact is similar as for the count queries, where
SpaceTime gives more stable and faster response times than
Geomesa, which again shows dependency on spatial distribu-
tion of the data.

In order to examine this performance dependency on spatial
distribution, the results from the spatio-temporal count queries
are plotted again in Figure 6, which now includes requested
area size as well. It can be seen from the figure that SpaceTime
shows no or very small dependency on an area size, while
Geomesa gives better response times for larger areas. This
is possibly due to different indexing schemes used by both
databases. On one hand, SpaceTime splits its indexes with
regards to the data, resulting with an evenly balanced indexing
buckets. Consequently, each query regardless of its size is
capable of utilizing parallel execution over multiple indexes.
On the other hand, Geomesa splits its indexes with regards to
space rather than data, which results in an unevenly clustered
data, resulting with almost serial data retrieval for small areas.

Finally, all count queries are plotted in Figure 7 in order
to compare database performances with regards to a type of
query, namely spatial, temporal and spatio-temporal. On one
hand, the figure shows that SpaceTime has low dependency
on a type of query, i.e., its performance follows a similar
curve for all types. On the other hand, the figure shows that
Geomesa gives almost flat performance for temporal queries,
scattered performance for spatio-temporal queries, and the best
performance for spatial queries.

Performance dependency on a type of query is again pos-
sibly related to the database’s different indexing schemes.
Namely, SpaceTime utilizes combined weighted index for
spatial and temporal features, which results with a single
balanced index. Geomesa, on the other hand utilizes two
separate indexes for spatial and temporal features, which
results with the completely different performance patterns for
all three types of queries.

0.1

0.2

0.4

0.8

1.6

3.2

6.4

0 0.5 1 1.5 2

R
es

p
o

n
se

 t
im

e 
[s

e
c]

Data volume [rows]

Millions

SpaceTime Geomesa

Fig. 6: Performance with regards to data volume and area size

IV. SCALABILITY BENCHMARKS

Results from Section III show that the database perfor-
mances depend mostly on the requested data volumes. Con-
sequently, additional benchmarks are executed over larger
datasets using spatio-temporal count queries. Besides scala-
bility tests regarding data volumes, database scalability also
depends on the amount of given resources, which is further
explored with different resource configurations including CPU,
memory, network and disk.

A. Data scalability benchmark

Area being queried covers a city of Rijeka as it contains
most of the data from the complete dataset. Moreover, the
queries span between 5 minutes and 2 hours with a step of
5 minutes, as well as for 2, 6, 42 and 44 days. All tests are
repeated 10 times in order to obtain average values, which
equals to 280 queries per database.

Figure 9 depicts the performance of both databases with
regards to the requested data volumes, going from several hun-
dreds of thousands of records to over 250 million records. The
figure clearly shows that SpaceTime outperforms Geomesa
on larger datasets, going from few times faster execution to
over 17 times faster execution. The figure additional gives
an insight that for even larger datasets this performance ratio
would increase even more.

0

1

2

3

4

5

6

0 1 2

R
es

p
o

n
se

 t
im

e 
[s

ec
]

Data volume [records]

Millions

Spatial Temporal Spatio-temporal

(a) Geomesa all COUNT queries

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2

Data volume [records]

Millions

Spatial Temporal Spatio-temporal

(b) SpaceTime all COUNT queries

Fig. 7: Performance of spatial, temporal or spatio-temporal
benchmarks (mind the different Y axis scale)



0

50

100

150

200

250

0 100 200

R
es

p
o

n
se

 t
im

e 
[s

e
c]

Data volume [rows] Millions

SpaceTime Geomesa

Fig. 9: Database scalability with regards to data volume

B. CPU related benchmark

For CPU related benchmarks 4 different configurations are
used, namely 12 cores as a default setup, along with 8, 4 and
2 cores, which equals to 40 queries per database. All other
resources are configured by default settings (Section II-B),
while a subset of queries from the previous section (city of
Rijeka with a time span between 2, 6, 42 and 44 days) is used.

Figure 8e shows that SpaceTime scales as expected with
regards to number of CPU cores, i.e., response times increase
as the number of cores goes down. However, Figure 8a shows
that Geomesa does not follow the same expected behaviour, as
its performance significantly degrades with 2 cores, while with
more cores it does not improve as much. Moreover, it even
exhibits better performance with 8 cores than with 12 cores.
This behaviour might be related to the fact that a physical
workstation has 16 virtual cores (2 x 8 physical cores), where
perhaps those 4 extra cores exhibit some context-switching
overhead rather than improve performance.

C. Memory related benchmark

For memory related benchmarks 6 different configurations
are used, namely 96 GB of RAM as a default setup, along with
16, 8, 4, 2 and 1 GB of RAM, which equals to 60 queries per
database. All other resources are configured by default settings
(Section II-B).

Figure 8f shows that SpaceTime slightly losses performance
once the allocated memory goes below 8 and 4 GB of

RAM but continues to perform very well even with 1 GB
of RAM. Geomesa, on the other hand, as shown on Figure 8b
starts losing performance with 2 GB of RAM and completely
degrades with 1 GB of RAM by giving almost 6 times longer
response times. This is due to the much higher memory
requirements by Geomesa compared to SpaceTime. During
tests, SpaceTime was hardly using 200 MB of RAM when
running idle along with the operating system, while Geomesa
would consume over 1 GB of RAM while being idle.

D. Network related benchmark

For network related benchmarks 2 different configurations
are used, namely 1Gbps as a default setup, along with
100Mbps, which equals to 20 queries per database. All other
resources are configured by default settings (Section II-B).

Figure 8g shows that SpaceTime performance does not
depend much on the network speed. However, it must be noted
that the executed queries are read queries, while for write
queries it is expected that the performance would vary due to
the fact that SpaceTime utilizes storage replication over net-
work. Geomesa exhibits significant performance degradation
(Figure 8c) even for read queries giving over 3 times slower
response times for 100Mbps network. This might be due to
the fact that Geomesa is essentially a plugin for Accumulo
database that uses Hadoop as a backend storage. Consequently,
it possibly creates a significant network overhead by running
as a distributed database on top of so many layers.

E. Disk scalability benchmark

For disk related benchmarks 2 different configurations are
used, namely SSD disk as a default setup, along with HDD,
which equals to 20 queries per database. All other resources
are configured by default settings (Section II-B).

One of the hard requirements of SpaceTime is the use of
SSD. However, Figure 8h shows that SpaceTime seemingly
performs the same on both SSD as well as on HDD, with
only few outliers for HDD. Figure 8d shows that Geomesa
gives slightly better performance while running on HDD. More
insights on these unexpected behaviors is depicted below.

(a) Geomesa CPU performance (b) Geomesa RAM memory performance (c) Geomesa network speed performance (d) Geomesa disk type performance

(e) SpaceTime CPU performance (f) SpaceTime RAM memory performance (g) SpaceTime network speed performance (h) SpaceTime disk type performance

Fig. 8: Database performance with regards to scalability benchmarks



0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11

R
es

p
o

n
se

 t
im

e 
[s

ec
]

Test number [#]
SpaceTime (SSD)

SpaceTime (HDD)

Fig. 10: Scalability performance by individual sequential tests

Figure 10 shows that SpaceTime, when run on SSD, has a
very stable performance for all 10 tests. However, when run
on HDD, the first test gives extremely poor performance, in
some cases even worse than Geomesa on both SSD and HDD.
All other tests from 2 to 10 perform the same as those on
SSD. This is possible due to an excellent caching capabilities
of SpaceTime. However, such performance on HDD cannot
be expected in a production as these 10 queries are all
the same and executed sequentially, which is not a realistic
situation. Therefore, the first test gives a somewhat more
realistic performance, which poor results can be explained by
SpaceTime’s heavy reliance on the disk speed.

Geomesa shows less stable performance by individual tests.
While running on HDD, it even performs better than on
SSD in three first tests, and then degrades, while on SSD it
slightly improves over sequential tests. These results show that
Geomesa does not handle caching very well, again possibly
due to a layered architecture where each layer performs a
caching operation of its own. Figure 11 shows even deeper
insights into database performances when running on HDD,
where additional tests are executed with only 2GB of RAM
to throttle the caching capabilities.

SpaceTime, when run on SSD, shows excellent and stable
performance which only increases as the data volume in-
creases. When run on HDD, the first query with around 60 mil-
lion records gives significantly worse results than SSD, even
slightly worse than Geomesa. The second query with around
150 million records gives the worse execution, even 2 times
worse than Geomesa and 46 times worse than SpaceTime
on SSD. However, the third query, although having around
225 million of records, performs better than the second one
that requests only 150 million records. This is due to the
fact that the third query queries the same area of the city
of Rijeka with the expanded time span, i.e., it contains the
same data. Consequently, this is where SpaceTime caching
capabilities kick in and provide better performance. This is
also evident with the fourth query which gives almost SSD-like
performance. However, in a test with only 2 GB of RAM that
throttles caching capabilities, SpaceTime gives much worse
results for all three queries, while only reaching SSD-like
performance with the fourth one.

Geomesa, when run on SSD, gives almost the same per-
formance as when run on HDD, where even HDD performs

0

50

100

150

200

250

300

350

0 100 200 300

R
es

p
o

n
se

 t
im

e 
[s

e
c]

Data volume [records]

Millions

SpaceTime (SSD)

SpaceTime (HDD)

SpaceTime (HDD+2GB
RAM)

Geomesa (SSD)

Geomesa (HDD)

Geomesa (HDD+2GB
RAM)

Fig. 11: Single test scalability performance

better for the fourth query. When throttled with only 2 GB of
RAM it performs worse as it cannot cache properly. However,
these results are very similar to the ones when Geomesa is run
on SSD with 2 GB of RAM as seen in Figure 8b. Therefore,
Geomesa does not utilize benefits of SSD considerably.

V. CONCLUSION

In this paper, a set of performance and scalability bench-
marks were performed in order to compare open source
solution for managing spatio-temporal data, namely Geomesa,
and a proprietary solution SpaceTime developed by Mireo.

The results show that SpaceTime outperforms Geomesa in
all performed benchmarks by giving response times in a range
of seconds, unlike Geomesa that requires minutes. SpaceTime
excels when executing different types of queries (spatial,
temporal and spatio-temporal). When testing scalability with
regards to the data volume it gives over 17 times faster
response time for 250 million records and it is expected to
perform even faster as the data volume increases. It better
utilizes more CPU cores and it consumes significantly less
memory. Its read queries are not as affected by the slower net-
work as Geomesa’s, and finally it utilizes caching capabilities
much better then Geomesa when run on HDD instead of SSD.
The only downside to SpaceTime is when running on HDD,
where it performs worse than Geomesa. Therefore, the hard
requirement for using SSD set by SpaceTime is confirmed.

VI. ACKNOWLEDGMENT

We would like to thank Mireo d.d., Zagreb, Croatia for pro-
viding access to SpaceTime database for benchmark testing.

REFERENCES

[1] M. M. Alam, L. Torgo, and A. Bifet, “A survey on spatio-temporal data
analytics systems,” 2021.

[2] A. Oussous, F.-Z. Benjelloun, A. Ait Lahcen, and S. Belfkih, “Big data
technologies: A survey,” Journal of King Saud University - Computer and
Information Sciences, vol. 30, no. 4, pp. 431–448, 2018.

[3] M. Sudmanns, D. Tiede, S. Lang, H. Bergstedt, G. Trost, H. Augustin,
A. Baraldi, and T. Blaschke, “Big earth data: disruptive changes in earth
observation data management and analysis?,” International Journal of
Digital Earth, 03 2019.

[4] R. Nandal, “Spatio-temporal database and its models: A review,” IOSR
Journal of Computer Engineering, vol. 11, pp. 91–100, 2013.

[5] T. Abraham and J. F. Roddic, “Survey of spatio-temporal databases,”
1998.

[6] “Benchmarking of big data technologies for ingesting and query-
ing geospatial datasets.” https://www.reply.com/en/topics/big-data-and-
analytics/Shared Documents/DSTL-Report-Data-Reply-2017.pdf. [On-
line; accessed 02-July-2021].


