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A B S T R A C T

We demonstrate how a hierarchical network comprising a number of compliant reference stations and a much
larger number of low-cost sensors can deliver reliable high temporal-resolution ozone data at neighbourhood
scales. The larger than expected spatial and temporal variation of ozone in a heavily-trafficked urban environment
is thereby demonstrated. The framework, demonstrated originally for a smaller scale regional network deployed in
the Lower Fraser Valley, BC was tested and refined using two much more extensive networks of gas-sensitive
semiconductor-based (GSS) sensors deployed at neighbourhood scales in Los Angeles: one of ~20 and one of ~45
GSS ozone sensors. Of these, ten sensors were co-located with different regulatory measurement stations, allowing
a rigorous test of the accuracy of the algorithms used for off-site calibration and adjustment of low cost sensors. The
method is based on adjusting the gain and offset of the low-cost sensor to match the first two moments of the
probability distribution of the sensor result to that of a proxy: a calibrated independent measurement (usually
derived from regulatory monitors) whose probability distribution evaluated over a time that emphasizes diurnal
variations is similar to that at the test location. The regulatory measurement station physically closest to the low-
cost sensor was a good proxy for most sites. The algorithms developed were successful in detecting and correcting
sensor drift, and in identifying locations where geographical features resulted in significantly different patterns of
ozone variation due to the relative dominance of different dispersion, emission and chemical processes. The entire
network results show very large variations in ozone concentration that take place on short time- and distance scales
across the Los-Angeles region. Such patterns were not captured by the more sparsely distributed stations of the
existing regulatory network and demonstrate the need for reliable data from dense networks of monitors.
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1. Introduction

Measurement of local-scale variations in air quality with high
temporal resolution is now a topic of significant interest, which is being
addressed through the development of networks of low-cost instru-
ments. For example, although O3 concentration may have a relatively
regular spatiotemporal spread over large distances (Chameides et al.,
1992), determined by the advection of large scale air masses such as
marine air (Ainslie and Steyn, 2007; Weissert et al., 2017), variations in
concentration on a small spatial scale across a city also can be very
large (Sadighi et al., 2018), and more correlated with nitric oxide
emissions and nitrogen dioxide generation. Given the strong gradients
in pollutant concentrations observed in both time and space, it is im-
portant to quantify these patterns and to elucidate the dominant pro-
cesses driving them if population exposure in urban areas is to be ac-
curately determined (Pattinson et al., 2017; Salmond et al., 2018).

As a consequence of developments in instrumentation and com-
munications, the deployment of networks of low-cost sensors at high
spatial density is now feasible. The term ‘sensor’ is often taken to mean
just the detection element, but here, for convenience to distinguish
different types of measurement instrument, the term ‘sensor’ refers to
the assembly of the detection element, measurement electronics, air-
inlet, air-sampling and communications systems, and housing and
mounting that together deliver the measurement result. The term “low
cost” is used largely in relation to the capital cost of the sensor versus
that of a regulatory station with certified instruments, but also needs to
include the costs of calibration and maintenance. Typically, ‘low-cost’
refers to such sensors whose installed capital cost is less than about 2%
of that of a regulatory-standard reference instrument. For networks of
such low-cost devices, the critical problem is the need to verify the
reliability of the results with minimum physical intervention or site
visits, which will dominate the network costs. Verifying reliability here
means establishing a calibration that, within acceptable bounds to be
defined, relates the instrument result to the otherwise unknown local
concentration. Minimising cost means avoiding expensive routine on-
site calibration. In principle, a Bayesian framework could be applied,
using conditional probability distributions of various forms of evidence
to check calibration stability of individual instruments and if necessary
adjust them. However, such methods generally require large amounts of
training data and are not necessarily transparent. Thus, in previous
work, we described a transparent management framework that would
allow use of general knowledge of the sensor and pollutant in order to
detect device drift (Alavi-Shoshtari et al., 2013, 2018; Miskell et al.,
2016, 2018). Such knowledge could include diurnal patterns and geo-
graphical information such as land use as well as cross-correlations
across a network (Alavi-Shoshtari et al., 2013, 2018; Miskell et al.,
2016). We then extended these ideas to a solution to the calibration
problem for low-cost air-quality sensors in networks (Miskell et al.,
2018). The ideas were developed from a specification of the purpose of
a low-cost network as supplementing a compliant ambient air mon-
itoring network, extending coverage and providing reliable information
for communities, including improved local coverage for exposure as-
sessment and enhancing source compliance monitoring. Thus, the
complete network is hierarchical: at the top are well-maintained,
compliant instruments (Miskell et al., 2018). The definition of

reliability in this context was derived from the stated purpose (Miskell
et al., 2016). The ideas were developed using data from a network of
low-cost O3 sensors deployed around the Lower Fraser Valley (LFV) in
Canada including the central urban area of Vancouver. The framework
exploited network cross-correlations averaged over time, did not need
large training sets to operate, was developed to work autonomously so
that analytics could occur in ‘real-time’, and was based on transparent
and simple assumptions. The concept of a proxy was introduced: that is,
a reliable source of data within the network, at a different location to
the site under observation, whose data have an understood expectation
of probability distribution in relation to the site under observation.
Miskell et al. used land-use similarity as the criterion for determining
similarity of probability distribution of pollutant concentration (Miskell
et al., 2016, 2018).

In the hierarchical network design, the reference stations have three
roles: to provide regulatory-quality data at selected sites; to establish
appropriate criteria for choice of proxies, by comparison between the
reference sites; and to provide proxy data that verify the reliability of
the low-cost network that is intended to extend the spatial scale
(Table 1). Whilst a proxy could also, for example, be a spatio-temporal
computational model (for example the comparison in Bart et al. (2014))
this would be computationally intensive. The framework as a whole,
which is set out below, involves three models, designed for transpar-
ency, clarity of purpose of each, clear comparison with instrument
standards, and flexibility. These are: a proxy model; a measurement
model, within which industrial standards for low-cost instrument per-
formance can be incorporated; and a ‘semi-blind’ calibration model,
which also includes a decision framework.

Adapting ideas of tests for industrial process stability to determine
instrument performance relative to the proxy, parameters are defined
that can be tracked using control charts to detect sensor drift and dis-
tinguish this from periodic atmospheric fluctuations. The important
concepts are:

1. A proxy model. If Xj,t denotes the true concentration at site j and time
t, Yj,t denotes the sensor result, and Zk,t the proxy site, k, then over
some time td that is sufficiently long to average short-term fluctua-
tions, Yi and Zk are two different estimates of the empirical cumu-
lative probability distribution of Xj whose similarity can be tested
using the Kolmogorov-Smirnov (KS) test. Using a control chart to
track the time variation of the marginal probability of the KS test,
pKS, between Yi and Zk signals an alarm that Yi ≠ Xi (Miskell et al.,
2016).

The proxy model is defined in terms of the unknown Xj evaluated
over the interval (t-td:t):

= + +E X b b E Z e{ } { }j t t t k t t t j t t t, : 0 1 , : , :d d d (1)

= +var X b var Z var e{ } { } { }j t t t k t t t j t t t, : 1
2

, : , :d d d (2)

where E{} denotes the mean and var{} the variance over the interval.
For a ‘good’ proxy, b0, b1 and e would fluctuate within defined bounds
and b0≈0, b1≈1, var{e} ≪ var{Z}. Since X is unknown, some means
to check the stability of the proxy given only the measurement results of
the network is required. The simplest way is to compare results across

Table 1
Summarises the relationship between the reference network and the low-cost sensor network.

Regulatory network Low-cost sensor network

Well-maintained and validated; regular site calibration to regulatory
standards

Factory calibrated before delivery; = +X a a Yj t j t, 0 1 , . Not regularly calibrated on-site

Federal Reference Method “ground truth” data at selected sites “indicative” method defined by industry standards. Here: a0= 0 ± 5 ppb; a1= 1 ± 0.3 (U.S.
Environmental Protection Agency, 2013)

Determine appropriate proxies Extends network to neighbourhood scale, to determine small-scale spatial and temporal variation
Checked and adjusted against proxy distribution, evaluated over td and tf .
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the well-calibrated reference instruments using various choices of proxy
for these. The regulatory network data are used to establish appropriate
proxies for the low-cost network, which in turn is used to extend the
scope of the regulatory network to neighbourhood scale.

2 A measurement model. Sensor calibration during manufacture is as-
sumed to establish Yt as a linear predictor of Xt.

= + +X a a Yj t j t j t, 0 1 , , (3)

where immediately following calibration, a0≈0, a1≈1 and the error,
εj,t, is a zero-mean random variable, within a defined specification.
Industrial standards can be set up defining acceptable bounds on the
parameters of equation (3) for sensors at the point of delivery from the
manufacturer. In the field, control charts of the parameters

=a var Z var Yˆ { }/ { }k t t t j t t t1 , : , :d d (4)

=a E Z a E Yˆ { } ˆ { }k t t t j t t t0 , : 1 , :d d (5)

test for drift of the instrument or for failure of eq (3), for example due to
cross-sensitivity of the sensor signal to other, perhaps correlated pol-
lutants (Miskell et al., 2016). Sensor drift can be detected through drift
of the estimates â0 and â1. We call this the Mean-Variance (MV) mo-
ment-matching test for intercept and slope.

3 A “semi-blind calibration” model. This is very simple (Miskell et al.,
2018). It states that the best estimate of the unknown, Xj,t, is given
by

= +X a a Yˆ ˆ ˆj t j t, 0 1 , (6)

where â0 and â1 are given by equations (4) and (5): that is, the best
estimate is given by matching the distributions of measurement and
proxy by simply matching the first two moments of the probability
distributions. If the distributions are characterized by only two para-
meters, then the site distribution, X̂j t t t, :d is constrained to be the same
as that of the proxy, Z. As discussed by Miskell et al. (2018), that raises
the question of whether the local site information is lost. However,
practical distributions are not simple 2-parameter ones though they
may be similar if sufficiently averaged, and as shown by Miskell et al.,
using both simulated and field data, this simple procedure indeed
captured the local variations, particularly the extreme values, and

corrected drifting devices (Miskell et al., 2018){
The question of what might constitute a good proxy is a difficult

one, and in both the previous and the present work has been ap-
proached empirically, based on general knowledge of factors influen-
cing pollutant distributions. As noted in Table 1, one of the uses of the
regulatory stations within a hierarchical network is to provide data
upon which the criteria for choice of proxies can be based. That is the
approach used in the present work. In the previous work (Miskell et al.,
2016, 2018), proxies were well-maintained reference stations chosen
based on land-use similarity. Basing the ideas on principles of land-use
regression gave a simple and effective solution. The previous work
demonstrated success in both identifying and correcting sensor drift.
However the transferability of the success of this model to regions of
different geography, meteorology, traffic and population is unknown.
Thus the question is whether the previous success was due to particular
geographical features of the LFV: for example, that the valley is rela-
tively confined, free from major geographical features within the valley
itself, and has a relatively smooth O3 field, so that cross-correlation
between sites was high. The LFV also has an extensive network of well-
maintained reference sites and good proxies were easy to identify using
very general land-use similarity. Thus one key issue, which we address
in the present work, is the selection of reliable proxies for a region with
mixed land-use and variable geographic features.

We apply the ideas in a setting which is much more geographically
variable, and demonstrate the generality through a study of two local-
scale networks in different locations in Southern California, including
the city of Los Angeles. The greater Los Angeles region is different from
the LFV where the management framework was first devised. First, the
population is much higher, with around 4.2 million inhabitants in the
Inland Empire region (i.e. San Bernadino and Riverside Counties) and
9.8 million in the Los Angeles city region (U.S. Census Bureau, 2010). In
comparison, the Metro Vancouver area has around 2.5 million people
(Statistics Canada, 2016). Second, motor vehicle traffic in Southern
California is more intense, with annual average daily traffic (AADT)
estimates over 370,000 in some locations (U.S. Department of
Transportation, 2016). This is in comparison to the LFV where the
AADT of a major route through a large tunnel is less than 85,000
(British Columbia, 2016). Furthermore, different latitudes and seasons
resulted in longer sunlight hours during the LFV network deployment
(~16 h vs. ~11 h during the measurement campaign in Southern

Fig. 1. Locations of the low-cost sensors in the two local-scale networks. Red points are the non-co-located sensors and those labeled sites are the sensors that are co-
located with a regulatory analyzer monitoring station. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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California that is reported here): sunlight is a known important pre-
cursor to O3 formation (Chameides et al., 1992). Some similarities are
shared between the LFV and Southern California, with sea breezes and
mountain ranges affecting the regional weather patterns and pathways,
causing elevated O3 downwind of the urban center and away from the
coast (Ainslie and Steyn, 2007; Lu and Turco, 1995; Sadighi et al.,
2018). The terrain in Southern California is complex, leading to com-
plex patterns of atmospheric convection that strongly influence surface
ozone concentrations (Bao et al., 2008; Neuman et al., 2012a; Ryerson
et al., 2013).

2. Methods

2.1. Study area

The two local networks were around the Los Angeles city (“LA”,
n=20) and the Inland Empire (“IE”, n=45) regions. Both regions
often fail to meet attainment of the standards for O3 air pollution levels
set out by the US EPA (Dogandzic and Zhang, 2006). In each local
network, five sensors were co-located with regulatory analyzer stations,
which were used for validation of the framework (Fig. 1). Some of these
sensors were moved for a short time to co-locate with other sensors, to
illustrate the idea of a mobile device deployed as a ‘buddy’ to check
local calibration. The IE area was recently examined by Sadighi et al.
(2018) using low-cost sensors to assess the local-scale O3 variation, with
evidence of significantly higher spatial variability than was captured by
the regulatory network.

The characteristics of the ten regulatory analyzer sites are in
Table 2. Each site had a Federal Equivalent Method Ozone analyzer
(model 49i, Thermo Fisher Scientific, Waltham, MA and model 400E,
Teledyne API, San Diego, CA) maintained and regularly serviced by the
South Coast Air Quality Management District (SCAQMD). Regulatory
measurement locations are selected with regard to a number of criteria,
which include the highest concentration, population exposure, source
impact and background. The sites had different urban surroundings and
spanned from residential to industrial land-uses. However, classifying
locations into land-uses was more difficult than in the LFV network due
to the complexity of the urban area (e.g. highly mixed land-uses). Road
traffic within both areas is high and is likely the dominant sources of
precursors to O3 formation (NO2 and volatile organic compounds) and
of nitric oxide that reacts with ozone to form nitrogen dioxide.

Data spanned from January–July 2018 for the IE network and from
March–July 2018 for the LA network. Missing periods in the data were
either from reference instrument calibration or from sensors going
offline or from the mobile measurement campaign. Ozone concentra-
tions showed a clear diurnal variation, with the maximum daily con-
centration increasing from January (winter) to July (summer):
Supporting Information (SI) Fig. S1. The time-series for the raw data
from the co-located sensors showed that, whilst most tracked the reg-
ulatory analyzer O3 data well, some sensors showed a clear drift over
time. To illustrate this point, the correlation of raw sensor data with co-
location site reference analyzer is shown in Fig. 2, segmented by month
from the first installation of sensors. The site co-located at Redlands
(RDLD) was of particular interest: here the low-cost sensor tracked the
regulatory station well, and the data showed significantly higher
minimum O3 concentration than at the other sites in the network, il-
lustrating some of the geographical variability over the region.

2.2. Low-cost sensors

The deployed ‘low-cost’ devices are the AQY sensors from Aeroqual
Ltd, Auckland, New Zealand. The O3 sensor uses a gas-sensitive semi-
conducting (GSS) oxide, WO3, as the detection element, with modula-
tion of both temperature and gas flow rate to provide a continually
checked zero and cancellation of effects of variation of atmospheric
humidity (Williams et al., 2013; Bart et al., 2014); (Aliwell et al., 2001; Ta
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Hansford et al., 2005; Utembe et al., 2006; Williams et al., 2002). The
sensor has been extensively validated in both laboratory and field stu-
dies which have shown equation (1) to hold (with changed parameter
values) even when the sensor output has drifted (Air Quality Sensor
Performance Evaluation Center, 2018; Bart et al., 2014; Cavellin et al.,
2016; Lin et al., 2017; Miskell et al., 2018; Williams et al., 2013). Here,
also, the uncorrected sensor values correlated linearly throughout to
the regulatory station with which each device was co-located (Fig. 2)
reflecting the fact that, despite drifts, the sensor output remained linear,
as required for the development following equation (1) to be valid. The
WO3 detection element is insensitive to NO at typical atmospheric
concentrations. The sensor uses a combination of temperature mod-
ulation and air-flow modulation essentially to eliminate interferences
due to variation of humidity or the presence of other pollutants such as
NO2 and volatile organic compounds at typical atmosphere con-
centrations (Bart et al., 2014). Data are measured each 1min and are
communicated to a server using the 4G cellular network. Key features of
the sensor include solar shields to regulate heat, sophisticated inlet
configuration (inert dust filters; anti-static and inert materials) and al-
gorithms that trap known failure modes (Williams et al., 2013).

2.3. Management framework

The management framework described by Miskell et al. (2016) has
two important timescales: the running time over which the probability
distributions are determined, td, and the timescale to determine whe-
ther a drift is a temporary excursion due to atmospheric variability or

indicative of an instrument or proxy failure, tf. As in Miskell et al.
(2016), we chose td=three days and tf=five days. These timescales
were selected to be long enough to recover the average diurnal varia-
tions, yet short enough to allow for reasonable response times. There
are three alarms: significance test using KS, pKS<0.05; 0.7< â1 <1.3;
-5 ppb< â0 <5ppb, and an alarm is signaled when any of these con-
ditions is maintained for a duration > tf. The alarm limits for slope and
offset are arbitrary and based on US EPA guidelines for indicative air
quality monitoring (U.S. Environmental Protection Agency, 2013). The
choice of threshold, pKS, is subtle. If td is made longer then there are
more data points hence the statistical test of difference between dis-
tributions becomes more sensitive; however, the difference between
distributions in a practical sense does not necessarily become more
significant. Rather, small differences between two sets of data can cause
an alarm signal because the KS test uses only the maximum separation
in probability of cumulative probability distributions of concentration.
The concentration range is not considered. Changes in the cumulative
probability near the median concentration value in the data can occur
as a consequence of small offsets that are not practically significant.

In the present work, data are corrected using eq. (6) if one or more
alarms are triggered. Whilst alarms are here based solely on the KS and
MV tests applied without restrictions, this is a rule-based framework
that is easily extendable to include other indications, for example
knowledge that the proxy is reliable only for certain wind directions, or
failure diagnostic signals derived from the sensor itself (Bart et al.,
2014; Weissert et al., 2017). The management framework originally set
out by Miskell et al. (2016) indeed used diagnostic signals derived

Fig. 2. Scatterplots of the raw hourly-averaged low-cost sensor data against the co-located regulatory analyzer data over the seven-month period. The line is the 1:1
line. Data are plotted separately for each month, distinguished by colour (in legend). Month 1 is January 2018–7 is July 2018. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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directly from the sensor as well as the proxy comparisons. We did not
use those signals in the present work, seeking only to evaluate the ro-
bustness of the proxy approach. The mean absolute bias (MAB) and
pair-wise Pearson correlation coefficient (R2) were used to quantify the
accuracy and precision of the sensor data to the co-located regulatory
analyzer data. All statistical analysis was in R (v 3.5.0) using the
packages ‘tidyverse’ (Wickham, 2017), ‘zoo’ (Zeileis and Grothendieck,
2005), ‘ggmap’ (Kahle and Wickham, 2013), ‘ggrepel’ (Slowikowski,
2018) and ‘lubridate’ (Grolemond and Wickman, 2011).

3. Results

3.1. Overall performance of the low-cost sensor network

Fig. 3 compares the distribution of the entire dataset for the low-cost
sensors with that for the regulatory instruments, over the full period of
the study. Fig. 3 also includes the sensor network data set corrected
according to the management framework and preferred proxy choice,
as detailed later in the paper. Network median O3 values were around
25 ppb in the IE network and around 30 ppb in the LA network. On
average, the low-cost sensor network reliably represented the O3 con-
centrations as reported by the regulatory network. The low-cost sensor
networks had significantly larger numbers of measurement locations
hence would be expected to capture greater variability, which might
also be seasonally-dependent. The effect of drift of individual devices,
which is always evidenced as a decrease of slope and a decrease in
indicated ozone concentration (Fig. 2) is seen in the smaller inter-
quartile range of results in the raw data, in comparison with the reg-
ulatory station results. The effectiveness of the correction procedure,
described in detail below, is suggested by the similarity of interquartile
range of corrected network results with that of the regulatory stations.
The increased number of outliers shown by the sensor network, both
raw and corrected data, in comparison with the reference network, can
be taken as evidence for the local spatial variability of concentration.
Later in the study, daily maximum ozone concentrations were higher
(Fig. S1), but also sensors had drifted. Both effects would be con-
tributing to the change in the number of outliers noted on Fig. 3.

3.2. Choice of proxy

In our previous work, we used land-use similarity as a criterion for
choice of proxy. In the greater Los Angeles area, the land-use is very
mixed, so this was not a criterion that could be applied unambiguously.
Table 2 shows the dominant land-use characteristic of the various
regulatory sites, where sensors were co-located. The annual average
density of vehicle traffic (AADT) within 5 km is also listed. We used the
regulatory network data to address the question: what constitutes a
reliable proxy? We compared each site in the regulatory network to
different choices for proxy: (a) the closest independent regulatory site;
(b) the median of all the local network (LA or IE) measurements (low-
cost sensor measurements – n~20 for LA and n~45 for IE - and n=5
regulatory measurements) for each hour; or (c) an independent reg-
ulatory analyzer with a similar surrounding AADT. We used the median
for speed and convenience of computation because using the pooled
data lumped together was computationally very slow. The network raw
data hourly median, treated separately for the LA and IE networks, was
good as a proxy in the earlier months but compromised by sensor drift
in the later months of the study. In the Supplementary Information (SI),
plots are given showing the correlation of the proxy-corrected data with
the actual data for all three choices of proxy (Fig. S2 – S4). Fig. 4 gives a
summary treating the regulatory analyzers as the test sites, comparing
two different proxy choices and showing the fraction of the total time
that each alarm was signaled, the MAB and the Pearson correlation
coefficient, R2, between the framework-corrected data and the actual
site data – again, just for the regulatory station data.

If the proxy were perfect, the MAB would, of course, be zero and the
Pearson correlation coefficient would be 1. The MAB shows the noise
introduced as a consequence of proxy matching and the Pearson cor-
relation coefficient shows the accuracy of the result. The proxy with the
lowest proportion of alarm indications, the smallest MAB and the
highest correlation of corrected to actual data for all the sites was the
simplest: a reference station in closest proximity. One site, RDLD, had a
much narrower distribution biased to higher values than other sites in
the network. This site is known as one where O3 concentrations may be
different from elsewhere in the region (Epstein et al., 2017;
Karamchandani et al., 2017). It is unusual in relation to others in the

Fig. 3. Comparison of the hourly-averaged pooled
data distributions from the regulatory station
network (blue, right-hand boxes; n= 5 in each
area) with that of the raw data from the low-cost
sensor network (green; center boxes; n ~ 45 in IE
and ~20 in LA as the exact numbers of operating
sensors changed over time) and for the sensor
network data corrected according to the manage-
ment framework described in the text (red; left-
hand boxes) for the two different local areas, by
time since deployment. Month 1 is January
2018–7 is July 2018. The line denotes the median
value. The upper and lower hinges represent the
25th and 75th percentiles. The whiskers extend
from the hinge 1.5 times the interquartile range.
Dots show outliers and the figures give the
number of outliers above the maximum of the
scale. (For interpretation of the references to
colour in this figure legend, the reader is referred
to the Web version of this article.)
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region because it is within a basin downwind of Los Angeles, that can
lead to accumulation of O3 (Neuman et al., 2012b), has a relatively low
AADT so that the titration of O3 by NO is less, and is set away from
major roads. Its proxy pair based on proximity was the regulatory site
SNBO, which although it had a similar AADT estimate, also had a
higher density of roads within its vicinity compared to RDLD. The area
around the regulatory site SNBO is also impacted by railyards and in-
dustry. However, even in this worst case the MAB introduced by the
correction procedure was satisfactory (< 4 ppb): indeed, the correla-
tion plots in the SI show that the errors were greatest at low O3 con-
centration and that the high O3 episodes (> 70 ppb, the maximum 8 h
running average concentration specified in the US national ambient air
quality standard) were well captured by proxy matching. The choice of
a proxy with a similar surrounding AADT, whilst satisfactory in some
cases in others introduced significant errors (MAB > 10 ppb; see also
SI, Fig. S4, illustrating the loss of correlation).

The question whether the proxy model is stable, and whether var-
iations in the proxy model (eq. (2)) can be distinguished from the ef-
fects of drift or interferences on the measurement model (eq (3)) can to
some extent be addressed by considering the time series of the MV slope
parameter, â1. If the random error in the measurement model is small in
comparison with that in the proxy model, then:
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The time variation of â1 can be split into a long-term trend and
short-term fluctuations about this trend. The long term trend can be
attributed to drift in the sensor and possible seasonal variations in the
coefficient b1, and the short term fluctuations to short term variations in
the assumed proxy correlation, reflected by variations in the parameters
and in the error term, ej. Evaluation of the reference station data against
reference proxies can be used to distinguish these effects. Fig. 5 shows
the results. For the site at RDLD, for a period of approximately 1 month
the trend moved outside the bounds set as appropriate for indicative
monitoring ( = ±â 1 0.31 ), though not greatly so. A similar effect was
observable at the site LAXH, where, associated with this trend there was
a period where the short-term fluctuations were greater. Given this
clear separation of short-term and long-term variations, the manage-
ment framework was modified to use the long-term trend values of â1
and â0 for assessment and correction of the sensor results. The effect is
to remove some of the noise attributable to proxy matching.

3.3. Management framework results for the low-cost sensors

Fig. 6 shows the time variation of the MV slope, â1, for the sensors
co-located at regulatory sites, using the closest other regulatory station

Fig. 4. Comparison of the different proxies (each
panel: top) across sites using hourly-averaged
regulatory data as the observations from the entire
test period (seven months). Colored bars denote
the percentage of total time that a test signaled an
alarm during monitoring (left-axis), the black
points denote the R2 value (right-axis), and the
written numbers near the site names denote the
mean absolute bias values (ppb). The proxy cor-
rections all used td= 72 h and tf= 120 h. Site
names are given and marked on Fig. 1.

Fig. 5. Time series of the MV slope, â1 , together with the long-term trend and the arithmetic difference between the trend and the actual value, for the regulatory
stations evaluated against the closest other regulatory station as proxy. The long-term trend value at time, t, is calculated as the least squares quadratic regression line
from time t to time zero (the commencement of the test).
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as proxy. The long-term trend clearly picks out devices that drifted. The
fluctuations about the trend are similar to those shown in Fig. 5.

Fig. 7 shows for each individual low-cost sensor the evolution over
time of the number of error signals generated by the proxy comparison
and the MAB of both the uncorrected and framework-corrected data in
relation to the regulatory analyzer with which the sensor was co-lo-
cated. The sensor at MLVB generated an error signal immediately on
deployment, implying a factory mis-calibration, that was trapped and
corrected by the framework. The SI (section 3, Fig. S5) gives the control
charts showing the variation of each of the three indices, pKS, â1 and â0
(defined in eqs (4) and (5)).

Fig. 8 further compares the MAB variation with and without the
framework correction. The closest proximity regulatory analyzer was
chosen as the proxy. The framework-corrected MAB was within
guidelines for indicative monitoring (U.S. Environmental Protection
Agency, 2013) throughout the measurement campaign. Fig. 9 shows the
correlation plots of the framework-corrected low-cost sensor result
against the co-located regulatory data, at the end of the study period.

Some sensors had been in the field for seven months, others for four
months (installation at month three). Many of the devices were stable
for the full study period of seven months. In general, the framework
detected the drifts, which inspection showed were caused by dirt de-
positing on the inlet filter, blocking it and consequently decreasing the
airflow over the detection element (Williams et al., 2013). Figs. 8 and 9
show that the management framework was successful in detecting and
correcting the drift and keeping the MAB within the range 2–8 ppb over
seven months: an improvement to the uncorrected data where MAB
values showed a steady increase over time which ended with a range of
6–16 ppb. For the proxy pair RDLD-SNBO, the unusual data distribution
at RDLD led to all three alarm signals registering almost immediately
after the sensors were installed. Such an occurrence, in the absence of
other information, would indicate either a sensor mis-calibration or
that the proxy and test site did not satisfy the condition of similarity of
data distribution. The result was overcorrection at low O3 concentra-
tion, and an increase in the MAB, as noted above. However, the cor-
rected low-cost sensor data captured the high concentrations reliably,
including following a significant sensor drift, even though the proxy
was not ideal. Full summary statistics are in the SI (section 4).

Control charts showing the variation of each of the test statistics for
each of the low-cost sensors are given in the SI (section 3, Fig. S5).
Blockage of the inlet such that the sensor became essentially insensitive
to O3 was clearly signaled by â0 and â1 going to unacceptably large

values and was also signaled by the sensor power consumption drop-
ping significantly.

3.4. A mobile “buddy” for low-cost sensor checking

The unusual site RDLD brings into focus the question of how one can
distinguish sensor mis-calibration from site-specific effects (Alavi-
Shoshtari et al., 2018). One method is to use a mobile calibration device
as a “buddy”, that is calibrated at a regulatory site, moved to co-locate
with the device to be checked, then moved back to the regulatory site
for a second calibration validation. The low-cost sensors are easy to
move and remount, so we tested this idea. Fig. 10 shows results for
three different sites, not at regulatory stations, where the sensors lo-
cated there had data corrected using the management framework with
the regulatory station in closest proximity as the proxy. The transfer
“buddy” and the local low-cost sensor agree within± 10 ppb. The ca-
libration of the transfer “buddy” was unaffected by the move. The result
illustrates the feasibility of using the low-cost sensors as mobile devices
to check calibration by “buddy” co-location. A map showing the in-
strument locations and movement is in the SI (Fig. S6).

3.5. Large local-scale spatial variations in ozone concentration revealed by
the low-cost sensor network

The purpose of the low-cost network has been stated as the exten-
sion of a regulatory network to capture neighbourhood-scale variations.
The method that we have described uses the regulatory network both to
determine and validate the choice of proxy, and then to use the proxy
distribution matching by matching mean and variance to check and re-
calibrate if necessary the low-cost sensor network. Indeed, the low-cost
sensor network revealed significant ozone concentration variations that
were not captured by the regulatory network, as illustrated in Fig. 11.

The low-cost network reveals the ozone depletion in the valley
along part of the highway network. It also shows the variability in this
depletion and the high ozone concentrations a short distance from the
highway network. These spatial variations are also strongly time-de-
pendent, as shown by the time series for two sites in close proximity (41
and 42 on Fig. 11) given in Fig. 12. This figure shows also the traffic
flow on highway 210 at the same time, the wind speed and direction
averaged over the period shown and the detail of the location. A similar
picture was seen for other sites such as 19 and 20.

The map can be interpreted as showing ozone titration by vehicle-

Fig. 6. Time series of the MV slope, â1 , together with the long-term trend and the arithmetic difference between the trend and the actual value, for the sensors co-
located at regulatory stations evaluated against the closest other regulatory station as proxy. The long-term trend value at time, t, is calculated as the least squares
quadratic regression line from time t to time zero (the commencement of the test).
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emitted NO during the night, when the traffic flow remained high
(~500/hr). During the day, when the traffic flow was extremely high,
photochemical ozone production through photodissociation of nitrogen
dioxide would cause elevated ozone levels near the highway (site 42
and other sites shown on Fig. 11). Although advection of the vehicle
emissions from the highway towards site 41 would occur during the
night, the ozone concentration at this site, though diminished, tended
to remain high there throughout the night. Ozone production, disper-
sion, long-range transport from the Pacific Ocean and transport to the
surface from the free troposphere in California have been intensively
studied (Bao et al., 2008; Neuman et al., 2012a; Ryerson et al., 2013).
The ground rises abruptly at the edge of the valley, close to site 41 and
at other sites where similar effects are seen, such as 19. One explana-
tion, then, is a downslope drainage flow during the night transporting
ozone from the upper troposphere to the valley floor at the edge of the
valley (Bao et al., 2008). The effects are known to be complex (Caputi
et al., 2018) and more work is required to clearly elucidate the un-
derlying processes; however it is evident that dense networks of
monitors, carefully managed to provide reliable data, can provide in-
sight into the occurrence and causes of local air pollution hotspots. Such

data also demonstrate that there is significant complexity in the spatio-
temporal pattern of ozone concentrations, which would otherwise have
gone undetected by the regulatory network.

4. Conclusion

We have demonstrated a hierarchical air quality measurement
network, grounded in high-quality, compliant reference stations and
extended to neighbourhood scale using low-cost sensors which are
based on a robust measurement principle that has been thoroughly
validated. We have established a cost-effective approach to managing
such air quality measurement networks and demonstrated that it de-
livers reliable results within an accepted specification for indicative
measurement. We have shown that a simple framework to both detect
and correct observed drifts can be applied in a geographically complex
area. The key ideas are linearity of the sensor output and the use of a
proxy measurement chosen to have a similar probability distribution
averaged over diurnal variations. The reference station network was
used to establish and validate the proxy choice. A simple choice, the
reference station in closest proximity, was satisfactory. Even when the

Fig. 7. Number of alarm signals generated by the low-cost sensor data in comparison with the proxy data (left-axis), and mean absolute bias (MAB)/ppb running over
72 h of the low-cost sensor data with respect to the reference station at the same site (right-axis). The colored lines are the alarm sum (black), the uncorrected
instrument MAB (red) and the framework-corrected MAB (blue). The framework correction uses the values of â1 and â0 derived from the quadratic long-term trend as
shown on Fig. 6. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Monthly (1–7) averaged mean absolute bias (MAB) across the low-cost sensors compared with the regulatory station at the same site (left: framework-
corrected data, right: uncorrected data). The framework correction uses the values of â1 and â0 derived from the quadratic long-term trend as shown on Fig. 6.
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Fig. 9. Hex-bin scatterplots of the hourly-averaged framework-corrected data (n=740) from the low-cost sensors against data from the regulatory instrument with
which each one is co-located, for month 7 of deployment. The black line is the 1:1 line. The framework correction uses the values of â1 and â0 derived from the
quadratic long-term trend as shown on Fig. 6. For the entire month 7 dataset, the root mean square deviation from the regulatory instruments was±1.3 ppb.

Fig. 10. Data validation by co-location of a calibrated “buddy”. Low-cost sensors were first calibrated by co-location at a regulatory station, then moved to a site to be
checked, then moved back to the regulatory station. The sensors being checked were managed using the closest proximity regulatory station as proxy. Ozone signal
from the two sensors at the three sites (numbered 1–3).

Fig. 11. Example of neighbourhood–scale variation in ozone concentration revealed by the low-cost sensor network. Left: reference network only; Right: reference
network and low-cost sensor network. Interpolation by inverse-distance weighting (power, -2).
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proxy had a rather different data distribution to the test site, the
method was reliable in capturing the high ozone concentrations.
Provided the sensors satisfy the linearity condition, the framework
provides reliable data from a low-cost sensor network. The resultant
map of ozone concentrations over the heavily trafficked area studied
shows significant variations in both space and time, over small distance
scales. These significant small-scale variations were not captured by the
reference network alone. Such a measurement network can now be
used to answer granularity questions about urban air pollution, such as
a more detailed examination of correlations between urban design and
local-scale spatiotemporal air quality variation (Weissert et al., 2019).
Our experience in establishing and operating a 100 sensor network in
Southern California, from which the results described in this paper were
derived, showed that the operating cost of a network of low cost sensors
is approximately the same as the sensor hardware costs when installa-
tion, data communications, data storage, and maintenance are taken
into consideration. The total cost of manufacture, installation and op-
eration for one year of the 100 sensor network was of a similar mag-
nitude to the cost of installation and operation for a year of one reg-
ulatory station.
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