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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

� Shows how to get reliable data from an 
extensive low-cost network of NO2 
sensors. 
� Shows drift correction methods for 

electrochemical sensors in hierarchical 
network. 
� Demonstrates use of statistical compar-

ison to trusted proxy. 
� Land-use similarity used to select refer-

ence sites as proxies, which can be 
distant. 
� Uncertainties low enough to resolve 

spatio-temporal variations over short 
distances.  
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A B S T R A C T   

We present a management and data correction framework for low-cost electrochemical sensors for nitrogen 
dioxide (NO2) deployed within a hierarchical network of low-cost and regulatory-grade instruments. The 
framework is founded on the idea that it is possible in a suitably configured network to identify a source of 
reliable ‘proxy’ data for each sensor site that has a similar probability distribution of measurement values over a 
suitable time period, and that sensor data can be checked and corrected by comparison of the sensor data dis-
tribution with that of the proxy. The framework is rule-based and easily modified. We use the reference network 
to choose proxies and check proxy reliability. We demonstrate the application of this methodology to low-cost 
instruments that use an electrochemical NO2 sensor together with a semiconducting oxide-based sensor for 
ozone (O3). The three NO2 sensor response parameters (offset, O3 response slope, and NO2 response slope) which 
are known to vary significantly as a consequence of ambient humidity and temperature variations, we show can 
be estimated by minimising statistical measures of divergence between sensor-estimated and proxy NO2 distri-
butions over a 3-day window. We show how the parameter variations and statistical divergence measures with 
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respect to the proxy can be used to indicate error conditions. The major error is due to a diurnally-varying, 
spatially-correlated offset term that is large for extremes of temperature, which we show can be estimated 
through its spatial correlation, using sensors co-located at reference sites. With these procedures, we demonstrate 
measurement at nine different locations across two regions of Southern California over seven months with 
average root mean square error �7.2 ppb (range over locations 4–11 ppb) without calibration other than the 
remote proxy comparison. We apply the procedures to a network of 56 sensors distributed across the Inland 
Empire and Los Angeles County regions. The results show large variations in NO2 concentration taking place on 
short time- and distance scales across the region. These spatiotemporal NO2 variations were not captured by the 
more sparsely distributed regulatory network of air monitoring stations demonstrating the need for reliable data 
from dense networks of monitors to supplement the existing regulatory networks.   

1. Introduction 

The question of reliability of data from low-cost sensors is conten-
tious and difficult to address (Williams, 2019). An approach that uses 
independent information to support sensor data is promising. We pre-
sent one such approach here, applied to measurement of nitrogen di-
oxide with electrochemical cells, that extends previously described 
methods for O3 (Miskell et al., 2016, 2018). The ideas are grounded in 
the concept of believability of results based on general experience 
(Williams, 2019). Central to the procedure is the concept of a trusted 
proxy. In the present work, proxy results are from a device that is trusted 
(for example, because it is regularly calibrated) which it is believed has a 
similar probability distribution of data over a suitably chosen time to the 
device to be checked and corrected. The belief on data distribution 
similarity is based on general experience: for example land-use regres-
sion of pollutant concentration which shows that land-use variables can 
be chosen that are similar at sites with similar pollutant time-averaged 
concentrations. 

Advancement in technology has resulted in the availability of low- 
cost sensors that can be used to collect real-time NO2 data at a high 
spatial and temporal resolution (Snyder et al., 2013). When deployed in 
dense hierarchal networks, low-cost sensors offer an opportunity to 
collect neighbourhood-level air pollution data. They have been used to 
detect small scale variations (Mead et al., 2013) and discriminate 
emissions due to different activities and emission sources (Popoola et al., 
2018). Thus, they have become a popular choice for community-based 
air quality networks and community science projects (Clements et al., 
2017; Hubbell et al., 2018). However, uncertainties remain about the 
data reliability of low-cost NO2 sensors largely due to drift and in-
terferences with other pollutant gases and variations associated with 
changes in temperature and relative humidity (Isiugo et al., 2018; Lewis 
et al., 2016; Mead et al., 2013; Weissert et al., 2019). In an attempt to 
calibrate the sensors and assess their accuracy, sensors are typically 
co-located against a well-maintained regulatory reference instrument 
for a period of time before and after deploying them in the field (Isiugo 
et al., 2018; Sadighi et al., 2018; Weissert et al., 2019). This appears a 
suitable approach only for short term deployments, while long-term 
deployments would require ongoing re-calibration (van Zoest et al., 
2019) leading to calibration and maintenance costs that may quickly 
exceed the costs of the instruments (Clements et al., 2017). In addition, 
this approach assumes that the calibration parameters obtained from the 
co-location of the low-cost sensors at a reference site are transferable to 
other locations in the sensor network. A recent study from a network of 
NO2 sensors in Eindhoven, Netherlands has shown that the calibration 
coefficients could not easily be transferred from one location to another 
within a city likely due to drift and interference effects being different 
for individual sensors (van Zoest et al., 2019) and to significant 
time-variation of the individual sensor response parameters. One sug-
gestion to overcome this problem is the use of a mobile reference sensor 
that is moved from one location to another for calibration, which would 
account for the spatial and temporal differences in the calibration pa-
rameters (Williams, 2019; van Zoest et al., 2019). However, the costs 
associated with this approach may quickly outweigh the benefits of the 
low-cost sensors particularly if they are deployed in dense networks. 

In our previous work, we developed a semi-blind management 
framework to verify the reliability of low-cost sensor data using general 
knowledge of the sensor and pollutant. Consequently, we were able to 
demonstrate remote correction of low-cost sensors that are deployed in 
dense networks (Alavi-Shoshtari et al., 2013; Miskell et al., 2016, 2018, 
2019). The management framework was tested using hierarchical net-
works, consisting of well-maintained regulatory-grade instruments and 
low-cost O3 sensors deployed around the Lower Fraser Valley (LFV) in 
Canada (Miskell et al., 2018) and Southern California (Miskell et al., 
2019). Data from the well-maintained regulatory-grade instruments 
were first used to determine suitable proxies across the region, and then 
to provide suitable proxy data to check for drift and if necessary apply a 
correction. We defined a proxy as a reliable source of data within the 
network but at a different location to the site of interest, whose data has 
a similar probability distribution (Miskell et al., 2018). A proxy site can 
be selected based on proximity or similar land-use (Miskell et al., 2016, 
2019). Testing this approach in these two distinct regions, which differ 
considerably in terms of geography, traffic patterns, climate and popu-
lation density, suggested that the approach is transferable. 

The purpose of this paper is to extend the management framework to 
electrochemical sensors for NO2, where the measurement model for the 
sensor is more complex than a simple 2-parameter model, and where 
interfering effects of climate variables are also complex. The proxy se-
lection problem also seems more complex, because NO2 is generally 
considered to be highly variable spatially and temporally. 

2. Methods 

In this section, after describing the study sites (2.1) and the low-cost 
sensors (2.2), we give the formal statement of the proxy model (2.3) and 
describe the proxy selection based on land-use criteria (2.4). We give a 
method to address the problem of assessing the reliability of proxy- 
corrected data using only the results from the sensors and the proxies 
in (2.5). In (2.6) we set out in detail the correction method for the 
electrochemical NO2 sensor, addressing the particular problems that this 
presents. 

2.1. Study sites 

The study sites were distributed across the Los Angeles region 
(Fig. 1). There are five regulatory sites in the Los Angeles city (‘LA’) and 
four sites in the Inland Empire (‘IE’) which includes Riverside and San 
Bernardino Counties in Southern California (Fig. 1). The sites are 
equipped with continuous reference method Nitrogen Oxides (NOx) 
analyzers, which are regularly maintained and serviced by the South 
Coast Air Quality Management District (South Coast AQMD). Eight sites 
are equipped with a model 42i NOx analyzer by Thermo Fischer Sci-
entific (Franklin, MA), while the Fontana site is equipped with a model 
200E NOx analyzer by Teledyne Advanced Pollution Instrumentation 
(San Diego, CA). At each site, we had a low-cost instrument that mea-
sures O3 and NO2 (details below: model AQY, Aeroqual, Auckland, NZ). 
We used data from January–July 2018 for the IE network and from 
March–July for the LA network. Vehicle emissions, particularly from 
heavy-duty vehicles, are the main source of NO2 in the LA region 
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(AQMP, 2016). Nitrogen oxides (NOx) are precursors to both O3 and 
particulate matter (PM) and therefore of major concern for air quality 
management (AQMP, 2016). Measurements are mixing ratios: 
parts-per-billion (109) by volume (ppb). 

2.2. Low-cost sensors 

The low-cost sensors deployed in the Los Angeles network are the 
AQY v0.5 sensors from Aeroqual Ltd, Auckland, New Zealand. We use 
the term ‘sensor’ here to refer both to the instrument package (O3, NO2, 
T, RH and PM2.5) and to the detection element. Ozone was measured 
using a gas-sensitive semiconducting (GSS) oxide, WO3, as the detection 
element (Aliwell et al., 2001; Hansford et al., 2005; Utembe et al., 2006; 
Williams et al., 2002). Air flow-rate modulation and temperature mod-
ulation are used to cancel interferences due to water vapour, and to 
continually reset and re-zero the sensor. This device has been shown to 
be robust, reliable and accurate for ambient monitoring (Bart et al., 
2014; Miskell et al., 2018; Williams et al., 2013). NO2 was measured 
using an electrochemical sensor, whose response has been characterised 
in detail (Weissert et al., 2019). O3 and NO2 measurements were 
collected with 1 min time resolution and then hourly-averaged. The 
instrument has been described in detail in Weissert et al. (2019). The 
electrochemical NO2 sensor element was supplied by Membrapor. 

2.3. Proxy model 

A critical element of the framework is the proxy model, which is 
described in detail in Miskell et al. (2018, 2019). To summarise, if Xj,t 
denotes the true concentration at site j and time t, Yj,t denotes the sensor 
result, and bXj;t the estimate of X derived from the measurement model, 
then the proxy model proposes that, over some time td that is sufficiently 
long to average short-term fluctuations, a proxy site, k, can be identified, 
with data Zk,t such that the empirical cumulative probability distribution 
of Zk is a reliable estimate of the distribution of Xj, evaluated over td. 
Then the parameters of the measurement model can be estimated by 
adjusting them such that the distribution of bXj approximates the dis-
tribution of Zk. In the previous work, the measurement model parame-
ters were adjusted to match moments of bXj;t and Zk.. We assume a linear 
measurement model: 

bXj;t ¼ ba0 þ ba1Yj;t þ εj;t (1)  

with parameters obtained by matching the mean, E{} and variance, var 
{} of bXj;t and Zk 

ba1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
�

Zk;t� td :t
��

var
�

Yj;t� td :t
�q

(2)  

ba0 ¼ E
�

Zk;t� td :t
�
� ba1E

�
Yj;t� td :t

�
(3) 

Then, given the linearity assumptions, 

Xj;t ¼ α0 þ α1 bXj;t þ ej;t (4)  

with (unknown) parameters 

α1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
�

Xj
��

varfZkg

q

; α0 ¼ E
�

Xj
�
� E

�
Yj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var
�

Xj
��

var
�

Yj
�q

� ba0α1

(5) 

Proxy selection aims to achieve α0 � 0 and α1 � 1. An obvious issue is 
that a precise estimate of uncertainty is not available since the true X is 
by definition unknown. The reference network is used to develop the 
criteria for choosing proxies and to indicate the resultant uncertainty. 

2.4. Proxy selection 

The proxy sites for the O3 and NO2 correction were established using 
data from the well-maintained South Coast AQMD regulatory network 
deployed in the LA and Inland Empire region (Fig. 1) with the proced-
ures described in Miskell et al. (2019), Miskell et al. (2016) and Miskell 
et al. (2018). In previous work on O3 measurement (Miskell et al., 2018, 
2019), we used the closest proximity location regulatory site as a proxy, 
since ozone concentrations are reasonably well correlated across a re-
gion except in close proximity to heavily-trafficked roads – a source of 
nitric oxide, NO (Guttorp et al., 1994; Coyle et al., 2002; McConnell 
et al., 2006). However, given the high spatial variability of NO2, here we 
explored the applicability of proxies chosen based on land-use similar-
ities, because land-use has proven to be capable of explaining a signif-
icant fraction of the total variance of concentration across a region 
(Hoek et al., 2008) and hence has a logical basis for a choice based on 
trust derived from experience. Variables were chosen based on a sys-
tematic literature review on land-use regression (LUR) models devel-
oped for the North American Region. In total, significant covariates from 
21 published NO2 LUR studies (Supporting Information, SI Table S1) 
were ranked to identify the most commonly reported land-use variables 
explaining NO2 variability in urban areas (Fig. 2). As expected, the most 
commonly used predictors for NO2 concentrations are related to traffic, 
length of major roads and distance to major road, followed by land-use 
(commercial/industrial) and population density. The most used covar-
iate was traffic, followed by major road length. However, local traffic 
(within 1 km) was not available for each site, thus we decided not to use 
traffic estimates for the proxy selection. We evaluated the land-use 
model against the reference data as described below. The adopted 
proxy model used only three parameters, because these were easily 
derivable from open-source data: distance to freeway (major multi-lane 

Fig. 1. Map of the regulatory sites (red points) and the low-cost instruments (black points) in the Los Angeles (LA) and Inland Empire (IE) region. A low-cost in-
strument was co-located at each regulatory site where both O3 and NO2 were measured. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 
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highway) primary road length within 1 km and elevation above sea 
level. The parameters for the different reference sites are given in 
Table 1. Each variable was scaled so that they all had a similar range and 
were therefore comparable. 

To identify the proxy site with the greatest similarity to the test site, 
we used the k-Nearest Neighbour classification (kNN). KNN is a super-
vised statistical learning technique aiming to classify the data to a given 
category based on a similarity using a test and a training set. The al-
gorithm finds the k training samples that are closest to the regulatory 
data of interest and assigns the most suitable proxy among the k training 
examples to the regulatory site. Here, we use k ¼ 2 (the second closest 
neighbour relative to a point is used). The proxy selection is shown in 
Table 1. Some of these sites were also those in closest proximity. A 
notable exception is the site RIVR where the land-use proxy is some 75 
km distant, in a different physical region (Fig. 1). 

2.5. Estimating the reliability of proxy-corrected data 

Some means is required, given only the proxy results and the mea-
surement results of the sensor network, to indicate the reliability of the 
proxy-corrected sensor results. We used two approaches, tested using 
the regulatory network and sensors co-located with regulatory 
instruments. 

First, we applied to the regulatory network data the framework 

approach introduced by Miskell et al. (2016) to detect drift. It is based on 
three different tests comparing the distribution of the measurement 
result, Y, with that of a proxy, Z, evaluated running over a time td: the 
Kolmogorov-Smirnov (K–S) test for significant difference between the 
distributions Y and Z, and the estimates from moment-matching of 
apparent slope, â1, and offset, â0 (eqs (2) and (3)). When predetermined 
thresholds are exceeded for any of the parameters for a duration of five 
days (tf ), an alarm is triggered and is used to indicate potential sensor 
drift. The probability distributions are determined over a window of 
three days, td. Data are corrected if one or more than one alarm is 
triggered. Each regulatory site was tested against its chosen proxy. Given 
that regulatory data are used, the proxy signalling drift will in fact be an 
indicator of periods when the proxy site is not representative (“false 
alarm”) and therefore this measure tests the performance of the proxy. 
The thresholds were: p*

KS ¼ 0.05 (for n ¼ 72 hourly-averaged measure-
ments) ba1 ¼ 1 � 0.25, ba0 ¼ 0 � 5 ppb. The thresholds and time windows 
are arbitrary and can be varied to make the test more or less rigorous. 

Secondly, we considered measures of statistical divergence between 
the distributions of the corrected sensor data, bXj, and the proxy, Zk. The 
statistical divergence between bXj and Zk should be smaller than that 
between Zk and the unknown Xj. If the proxy distribution is a good 
estimator of the true data distribution, then the divergence between bXj 

and Zk should be small. With increasing dissimilarity between the dis-
tributions of Zk and the unknown Xj the observed divergence between bXj 

and Zk should increase. Fig. 3 illustrates the idea, by using log-normal 
distributions as a model. The difference between the distributions of Xj 

and bXj at the mean of bXj is shown as a function of the KS and Hellinger 
divergences (see SI, for definition) between the distributions bXj and Zk 
for different model distributions. Fig. 3 shows that the two divergences 
are, as expected, correlated, but that they are differently sensitive to 
differences in the shape of the distributions. Fig. 3 illustrates that just 
using a threshold value for one divergence to signal that the likely error 
between true and estimated result has exceeded an acceptable value 
might incur a significant false negative rate – indicating an issue when 
the error was acceptable – depending on the shape of the proxy distri-
bution in comparison with the (unknown) true data distribution. How-
ever, Fig. 3 also shows that in principle a threshold curve for the two 
divergences between corrected sensor and proxy data can be set, that 
reduces the false negative rate. We checked these expectations in prac-
tice by comparing results across the well-calibrated reference in-
struments using the choice of proxy for these, and by evaluating the root- 
mean-square error for sensors co-located at reference sites, where the 
sensor was corrected by the proxy. Proxy-corrected data for sensors co- 
located at reference sites were used to evaluate the dependence of 
measurement error on the distribution divergence between corrected 
sensor and proxy data. Thus, the regulatory network data are used to 
establish appropriate proxies and error estimates for the low-cost 
network, which in turn would be used to extend the scope of the regu-
latory network to neighbourhood scale. 

Fig. 2. Commonly used covariates in LUR models to predict NO2 concentra-
tions in the North American region. ‘Sum’ is the total number of times the 
particular covariate has been used across the studies cited. 

Table 1 
Descriptions for the nine regulatory locations, the NO2 proxy chosen by land-use similarity and the physical distance between each location and its NO2 proxy. Land- 
uses are based on publicly available data. Proxy sites in bold are also the sites in closest proximity. O3 proxy sites are those in closest proximity.  

Name ID Dist. to freeway/ 
m 

Elevation above sea-level/ 
m 

Primary road length within 1 km/ 
m 

NO2 Proxy 
site 

NO2 Proxy distance/ 
km 

O3 

proxy 

Rubidoux RIVR 685 248 6708 CELA 75 MLVB 
Mira Loma MLVB 2480 220 0 SNBO 24 RIVR 
San Bernardino SNBO 2620 316 2408 MLVB 24 RIVR 
Fontana FONT 3210 363 5889 SNBO 20 MLVB 
Pico Rivera PICO 803 58 6563 CELA 16 CELA 
Compton CMPT 1660 22 7040 HDSN 12 HDSN 
LAX Hastings LAXH 4450 37 4270 CMPT 21 CMPT 
Long Beach 

(Hudson) 
HDSN 1150 10 5566 CMPT 11 CMPT 

Central LA CELA 917 89 5168 HDSN 30 PICO  
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2.6. Correction method for the NO2 sensor 

The measurement model for the NO2 sensor, relating the measured 
current in the electrochemical cell, imeas, to the indicated concentration 
of NO2, CNO2 ; is (Weissert et al., 2019): 

CNO2 ¼ β0 � β1imeas � β2CO3 (6) 

Factory calibration of the assembled instrument before field 
deployment determines a number, Cox ¼ β1imeas � β0 , which is linearly 
related to the raw current measurement. The instrument reports Cox as 
well as the NO2 concentration derived from the factory calibration and 
the uncorrected O3 concentration determined with the O3 sensor. Now, 
the offset, β0, and the response slopes, β1 and β2, can be time-varying, for 
example in response to changes in atmospheric humidity or tempera-
ture. The objective of the procedure is to estimate and correct for this 
variation. The measurement model to be used, therefore, given the re-
sults reported by the instrument, is written 

bCNO2 ¼
bb0 þ bb1Cox � bb2CO3 þ e (7)  

where e denotes any signal not accounted for by the principal variables 
assumed to drive the response and which also includes any measurement 
noise. Following the concepts described earlier, the correction method 
estimates values of the parameters bbj to match the probability distri-
bution over time td of the estimate bCNO2 to that of a proxy, ZNO2 , by 
minimising a suitably chosen objective function. The proxy site is chosen 
based on land-use similarity. We explored two methods which gave 
similar results. First, we evaluated minimisation of the sum of squared 
differences of the first three moments of the distributions. Second, we 
evaluated minimisation of the Kullback-Leibler divergence (see SI, for 
definition) of the two distributions, DKLðPðbCNO2 ÞjjPðZNO2 ÞÞ. The moment 
matching method emphasises the tails of the distributions. The Kullback- 
Leibler method, on the other hand, emphasises the most probable 
values, and its minimisation is equivalent to maximising the mutual 
information or minimising the relative information entropy of the two 
distributions and we chose it for that reason. In the following sections, 
we present the results from the minimisation of DKL. Thus, we aim to find 
best estimates bbj such that: 

DKL
�
P
�
bCNO2

�
�Cox;CO3 ;

bbj
��
�
�
�PðZNO2 Þ

�
¼min (8) 

In this calculation, the value of CO3 used is that delivered by the O3 
sensor which is checked and corrected if necessary according to the 
management framework as previously described (Miskell et al., 2019). 
The parameters are re-estimated only when the comparison of the 

(previously) estimated bCNO2 with the proxy gives an alarm, thus mini-
mising the computational overhead. The process is initiated using the 
concentration values given by the pre-deployment factory calibration, 
denoted here CNO2 ðrawÞ. The probability distribution of the estimate 
should be a sum of three distributions corresponding to the three terms. 
The variability of Cox would be determined by the noise in the electro-
chemical sensor (Weissert et al., 2019) and the averaging approach used 
to reduce this. O3 and NO2 measurements were collected with 1 min 
time resolution and then were hourly-averaged. Based on the results in 
(Weissert et al., 2019) we expect the standard deviation of this number 
to be less than 1 ppb. The RMSE of CO3 , corrected according to the 
management framework, is 5.4 ppb for all reference sites combined and 
the entire study period (January–August), with a maximum RMSE of 7 
ppb for individual sites (Miskell et al., 2019). 

Two issues could affect the reliability of the parameters in equation 
(7) obtained through minimisation of the difference between the prob-
ability distributions. First, if the distributions approximate simple 2- 
parameter distributions (e.g. log-normal) then deriving three parame-
ters from the comparison over-fits the data and would raise issues of 
correlation between the parameter estimates. A second potential issue, 
under circumstances where O3 and NO2 report similar concentration 
levels, is that an unconstrained minimisation could easily lead to 
physically unreasonable estimates with the parameters changing sign. 

Indeed, we noted that minimisation of DKL with bCNO2 calculated with 
eq (7) without physically realistic initial estimates of the parameters, 
could easily lead to false minima with physically unrealistic parameter 
values (e.g. inverted sign). Physically realistic initial estimates for the 
minimisation were obtained as follows:  

a) the measurement model is approximated by setting b2 ¼ b1 as 
observed and also theoretically expected for an electrochemical 
sensor of this type without O3 decomposition catalyst applied 
(Weissert et al., 2019).  

b) the initial estimates of b0 and b1 (¼b2) are obtained by moment 
matching to the proxy: 

bb2;init ¼ bb1;init ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varfZNO2g
�

var
�

COx � CO3

�q

(9)  

bb0;init ¼ EfZNO2g � E
�

COx � CO3

�
(10)  

following which the bj are iterated in eq (7) to minimise DKL (eq (8)). The 
value Cox is the raw signal from the electrochemical sensor using the 
internal offset and slope values as above, hourly averaged, and (as noted 
above) the value of CO3 used is that delivered by the O3 sensor, hourly 
averaged, checked and corrected if necessary according to the 

Fig. 3. Log-normal model distributions used to model the proxy distribution fitting procedure. Left: example distributions of true, proxy and sensor data corrected 
using eqs (1)–(3); and linearity of corrected sensor predicting true data, according to eqs (4) and (5). Right: illustration of the variation of the estimation error 
(difference between corrected sensor and true data at the arithmetic mean of the corrected sensor data). with the Kolmogorov-Smirnov divergence, ΔK-S, and 
Hellinger divergence between corrected sensor and proxy. Shaded area illustrates the possibility of determining whether the correction is acceptable by using a 
combination of the two divergences. Open symbols: fixed arithmetic mean, m, and varying arithmetic standard deviation, s; filled symbols: fixed proxy s, varying m. 
The dimensionless parameters for the model distributions have been chosen to match approximately the observed NO2 data in ppb. 
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management framework as previously described (Miskell et al., 2019). 
The management framework is schematically illustrated in Fig. 4. 

3. Results and discussion 

In the following, in (3.1) we describe the general characteristics of 
the data and in (3.2) the results of the proxy assessment. To test the 
sensor correction method described in (2.6) in the absence of noise 
introduced by the proxy and by the ozone sensor, in (3.3) we show the 
application of the sensor correction method to co-location data, using 
the reference O3 and NO2 data from the co-location site. This study 
identified an important offset error term, that varied on a timescale less 
than the framework error detection timescale and therefore prevented 
the framework compensating. The offset error was climate-related 
(mostly but not entirely ambient temperature) and spatially corre-
lated. The correlation with ambient temperature was non-linear and the 
effects of extremes were persistent, hence although extremes of tem-
perature could in principle be used to signal an issue, we chose not to 
attempt correction by use of a correlation with temperature. Instead, we 
used the knowledge that this offset error term was spatially correlated to 
apply an additional correction, derived using the closest proximity 
proxy site. Then, in (3.4) we show application of the framework to 
sensors that were co-located at reference sites, but using proxy data and 
the sensor ozone data. By comparison with the reference data from the 
site of co-location, we evaluate the error in the whole procedure. Table 2 
gives the comparison between corrected data and the reference instru-
ment data at each stage of the development, at each site, averaged over 
the time of the study. We show how tracking of the derived sensor pa-
rameters over time identifies occasions when errors might be excessive, 
either due to issues with the proxy, or when the sensor drift was 
excessive indicating the need to replace the sensor. We show how sta-
tistical divergence measures between sensor and proxy identify cir-
cumstances with potentially large error, following the ideas developed 
in (2.5). We present a detailed analysis of the errors and show that 
proxies chosen by land-use criteria that are a significant distance away 
from the sensor site can give satisfactory results. In (3.5) we show the 
large-scale local variations revealed by the low-cost sensor network. 

3.1. General characteristics of the data 

The temporal and spatial variability of NO2 concentrations, as shown 
by the reference instrument network, was, as expected, large: Fig. 5. The 

distribution of values varied month-by-month, from broad and bimodal 
in winter (mean � sd temperature/RH: 16 �7 �C/46 � 26%) to narrower 
and monomodal in summer (mean � sd temperature/RH: 27 �6 �C/55 
� 21%), and displayed different patterns at different sites (Fig. 5a). 
Diurnal variations were irregular: in winter, the variation was typically 
small fluctuations upon a large and variable background; in summer, 
values were frequently low and hardly varying (Fig. 5b). The diurnal 
variation showed patterns that were frequently similar across a number 
of sites whilst being very different at others (Fig. 5c). At some sites and 
months of the year, the concentration distribution averaged over the 
month approximated a simple log-normal (hence 2-parameter) distri-
bution; at others, it did not, being very strongly tailed to high values 
(Fig. S1). 

3.2. Proxy evaluation using the reference network 

The wide variation in NO2 distribution across space and time, 
exemplified by the results given in Fig. 5, illustrates the challenge in 
determining appropriate proxies for a region as varied as that of 
Southern California. The framework that we have proposed uses com-
parison of the statistical distribution of concentration over a rolling 
timescale of 3 days to signal an ‘alarm’ and of 5 days to signal a ‘failure’. 
We applied this framework to the reference network, using the proxies 
for each site determined by land-use criteria (Table 1). Fig. 6 is an 
overview of the number of times the framework approach signalled an 
alarm due to a threshold being exceeded (“false alarm”). These are “false 
alarms” because regulatory stations are being compared. Typically, the 
alarm was raised due to differences in the distribution of NO2 concen-
trations between the site and its proxy (‘KS-test’), followed by a change 
in the slope (‘MV-slope’). The intercept (‘MV-intercept’) remained 
mostly stable between the regulatory site and its proxy site. The fre-
quency of false alarms over the several months of the study was small: <
1% of the total of hourly average values were falsely indicated as alarms, 
even at the RIVR site, where the proxy was 75 km distance in a different 
region. Therefore, approaching the problem through a comparison of 
probability distributions over an appropriately chosen timescale indeed 
provides a way of defining suitable proxies. Fig. 6 shows that the sites 
could be classified into two classes: those where the proxy false alarm 
rate was very small, < 0.2%, and others where it was somewhat higher 
but still <1%. For the first group of sites, the proxy-corrected reference 
data almost exactly matched the uncorrected data. Conditions at the 
latter group of sites that might give rise to the higher rate of false alarms 

Fig. 4. Summary of the O3 and NO2 management framework and correction process.  

L. Weissert et al.                                                                                                                                                                                                                                



Atmospheric Environment 228 (2020) 117428

7

Table 2 
Summary statistics comparing the uncorrected, framework corrected and framework corrected plus es AQY NO2 data against the regulatory, for correction using co- 
located instrument data (described in section 3.3), and for correction using proxies and the sensor ozone data (described in section 3.4).    

Proxies  Co-located     

Uncorrected Framework corrected  Framework corrected þ es Framework corrected Framework corrected þ es 

REF 
Site 

R2 MAB RMSE R2 MAB RMSE R2 MAB RMSE R2 MAB RMSE R2 MAB RMSE 

RIVR 0.72 6.34 8.13 0.71 6.04 7.71 0.74 5.35 6.81 0.76 3.92 5.65 0.81 3.78 5.32 
MLVB 0.53 7.86 9.72 0.68 5.01 6.79 0.71 4.97 6.70 0.69 7.11 8.80 0.75 7.14 8.71 
SNBO 0.26 9.12 11.18 0.52 8.02 10.43 0.56 8.14 10.80 0.69 4.14 5.49 0.75 3.68 5.05 
FONT 0.47 10.13 11.92 0.63 5.25 6.95 0.67 5.42 6.96 0.61 5.72 7.71 0.72 4.64 6.30 
PICO 0.07 9.89 11.99 0.52 4.36 5.56 0.61 4.02 5.15 0.56 3.5 5.67 0.69 2.69 4.69 
CMPT 0.70 6.36 7.45 0.77 3.72 5.10 0.76 3.84 5.17 0.86 2.97 3.96 0.87 3.00 3.93 
LAXH 0.60 4.90 6.62 0.63 5.81 7.21 0.60 5.92 7.35 0.84 2.24 3.11 0.85 2.22 2.95 
HDSN 0.46 10.06 11.82 0.68 3.37 4.35 0.72 3.19 4.19 0.76 2.96 3.98 0.82 2.67 3.58 
CELA 0.6 14.71 15.88 0.60 4.53 6.03 0.55 4.58 6.55 0.78 2.99 4.24 0.79 2.53 4.09  

Fig. 5. Examples of data for the spatio-temporal variation of NO2, as shown by the reference instrument network. a) Frequency distributions of concentration at 
exemplar different sites month-by-month (month 1: January 2018; month 7: July 2018). b) Time series at the Hudson (HDSN) site, exemplifying variation in winter 
(January) and summer (July). (c) Time series over a few days at all nine sites, showing both similarities and differences across the study area. 

Fig. 6. Percentage of hourly average measurements at the different reference sites that are indicated as alarms by the proxy site (sites given in Table 1), for the three 
different tests. The two panels show on different scales the two groups of site: those with very low alarm rate (left) and those with a higher alarm rate (right). 
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and consequent errors in correction are next examined. 
Fig. 7 shows that the dominant factor driving false alarms and hence 

over-correction was wind speed and direction. The error at MLVB, RIVR 
and SNBO is a slope error – var{SNBO}/var{MLVB} > 1 when the wind 
was from the W, with the effect greater at SNBO when the wind speed 
was low; and var{CELA}/var{RIVR} >1 when the wind was from NNE 
and the wind speed was high. The error at LAXH is dominantly an offset 
error: E{CMPT} > E{LAXH} when the wind speed was low. The sites at 
RIVR and CELA are very distant and in different regions. The false 
alarms and over-correction with high wind speeds from the NNE are 
likely related to the mountains NE of the site and their effect on ozone 
transport and hence titration of vehicle-emitted NO. Further, false 
alarms at RIVR were also more common when wind speed was <5 m s� 1, 
a condition under which observed NO2 concentrations would be ex-
pected to be dominated by local emissions and possibly therefore 
different from those at a proxy site: again, possibly related to ozone 
transport. The site at SNBO is 3 km east of the San Bernadino Santa Fe 
Train Depot, a major transport hub and presumably source of NO2 
emissions (Weissert et al., 2020) and thus potentially significantly 
increasing the variations at SNBO when the wind is from the west. LAXH 
is the regulatory site at the Los Angeles International (LAX) airport and it 
is the least similar to any other regulatory site in terms of land-use. It is 
in effect a large open space close to the ocean. At LAXH, the KS test 
trigger was more frequent than at any other site: the concentration 
distribution at LAXH was the least similar between sites, as was also 
determined by other measures of divergence (eg Kullback-Leibler). 

Effects of local geography and meteorology are not easily captured in 
land-use models. However, the effects are clear and easily captured in 
simple rules. For example, it would be possible to introduce conditional 
statements in the framework approach for situations when the proxy site 
is not suitable. The reference instrument network could be used to 
identify whether there was a more suitable proxy to use under these 
circumstances: for example, under error conditions to switch the proxy 
for RIVR to one within the same valley and with similar land-use, which 
would be MLVB. The use of MLVB as proxy for RIVR indeed resulted in 
fewer false alarms. Whilst land-use similarity is arguably a more logical 
basis for proxy choice than simple proximity, and such a choice provides 

a logical basis for network design to minimise the number of proxy sites, 
Fig. S2 shows that indeed for some sites the closest proximity other site 
was a better proxy. The data that we give in this paper have not, how-
ever, been additionally corrected in this way. 

3.3. Using co-location data to evaluate the sensor correction method, 
sensor parameter variation and error terms 

Most co-location studies use regression methods. In contrast, our 
proxy comparison is based on similarity of probability distributions over 
a time interval. Therefore, we used comparison of probability distribu-
tions on the co-location data to evaluate the performance of this method. 
For this part of the work we used the co-located reference O3 data to 
avoid noise associated with the sensor O3 correction. Fig. 8 shows 
hexbin scatter plots of the sensor NO2 corrected using the co-located 
reference O3 data against the co-location reference NO2 over the 7 
months of the study. The derived sensor parameter variations over time 
are given in Fig. S2. Parameter variation over time, within bounds, is 
expected. However, the sensors at MLVB and RIVR showed a downward 
drift of the slope parameters from July onward, very marked at MLVB, 
which the method compensated by an increase in the offset parameter. 
This behaviour should be taken as an indicator of sensor failure. All 
other sensors appeared stable. The hexbin plots show a significant 
scatter of the results. However, Fig. 9 shows that the difference between 
sensor-indicated NO2 and reference NO2 had a part that showed a 
diurnal variation as well as a part that showed apparently random 
variation. The difference term was to a degree spatially correlated, and 
particularly correlated between locations within the Inland Empire re-
gion. The variations tended to become larger at inland locations 
compared to those close to the sea. The correlation matrix is given in 
Table S2, the correlations between sites in closest proximity are shown 
in Fig. S4, and the dependence of the correlation on inter-site distance 
and region is shown in Fig. S5. Fig. 9 also shows the joint probability 
distribution of the difference term and ambient temperature, measured 
by the sensor. Extreme values of the difference were associated with 
high (~50 �C) or low temperature (<12 �C), and there was a slow drift 
following an extreme (Fig. 9) but otherwise there was not a strong 

Fig. 7. Analysis of false alarms triggered by the proxy, at sites where these were more significant. (a) mean number of alarms per hour segmented by wind speed and 
direction. (b) Proxy-corrected reference data compared with uncorrected data, segmented by month and wind speed. 
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correlation. 
The difference term can be attributed to large variations of the offset, 

bb0. The variations are related to the electrochemical sensor, indicating 
fluctuations with a time scale between 1 h and 3 days, these being the 
timescales of averaging and of comparison with the proxy distribution. 
The existence of a dependence of electrochemical NO2 sensor signal on 
temperature, humidity and their rapid changes is known, but there is no 
simple relationship. Without a definitive model for the variations, it is 
difficult to provide a rigorously-based correction method. Below, we 
present an empirical method based on the observed spatial correlation. 

Given these results, we rewrite the measurement model (eq (7)) as: 

bCNO2 ¼
bb0 þ bb1Cox � bb2CO3 þ eS þ ε (11)  

where eS denotes a spatially correlated error term and ε the residual. 
Now, we propose a proxy method for estimating eS. Since we have 
electrochemical sensors co-located at reference sites, and the term is 
spatially correlated, an estimate of eS at some other site would be that 
value determined at the closest proximity reference site, at the required 
time. Fig. 10 illustrates the issues with this idea. Firstly, if proxy data are 
unavailable at any particular period, then obviously no correction can be 
made; secondly, although the error term is spatially correlated on 
average, at any particular time the difference between the values at the 

Fig. 8. Hexbin scatter plots showing the correlation of sensor NO2 with co-location reference NO2, where the sensor NO2 is derived using the distribution matching 
method (Fig. 4 and eqs (7)–(10)) and the co-location reference NO2 and O3 data. 

Fig. 9. (Left) Example time series of the difference term between framework-derived sensor result and the co-location reference result, illustrating the offset error. 
The arrow marks where the management framework detected and corrected the drift. (Right) Joint probability distribution of difference term (‘error’) and ambient 
temperature, for the whole data set. Temperature Quantiles (�C): 0: 1, 1: 12, 2: 14, 3: 16, 4: 18, 5:19, 6: 21,7: 23, 8: 26, 9: 30, 10: 50. 

Fig. 10. Examples of the uncompensated error term, 
and its partial correction using the error determined 
at the closest proximity site. red: error term deter-
mined at the closest proximity site; blue: actual error 
(eS þ ε, eq (11)) determined at the measurement site 
following correction of the sensor using K-L method; 
green: actual error determined at the measurement 
site following correction of the sensor using K-L 
method and determination of eS using the closest 
proximity site (damped and smoothed as described in 
the SI). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web 
version of this article.)   
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measurement site and the proxy site can be large. Given these issues, we 
found that this method could however compensate a useful fraction of 
the difference term, provided the correction was limited: we used a 
sigmoid function to damp the error correction and a rolling average to 
smooth fluctuations; details are in the SI. Fig. 11 shows hexbin scatter 
plots for the co-location data where the error term eS has been estimated 
from the closest proximity other site. The scatter is diminished at most 
sites. The overall RMSE improved and is 5 ppb (statistics for individual 
sites in Table 2). Given that the estimated error due to sensor noise is less 
than 1 ppb, the major contributor to this error would be uncompensated 
sensor responses, such as are reflected in the uncompensated offset error 
term shown in Figs. 9 and 10. 

3.4. Using sensor ozone data and proxy sites to check and correct the NO2 
sensors 

Here, the framework was applied to sensors located at reference 
sites, using the O3 sensor, the proxy sites for NO2 (land-use) and O3 
(proximity) to derive the sensor parameters using the K-L method ac-
cording to eqs (7)–(10), and the closest proximity proxy also to deter-
mine the spatially-correlated error, eS (eq. (11) and eq. (S1)). The 
resulting corrected sensor result is compared with the reference result at 
the same site. 

Overall, the framework produced satisfactory results. Fig. 12 shows 
examples of the time variation of the uncorrected and corrected rolling 
mean absolute bias (MAB) in relation to the co-located regulatory NO2 
and the alarm signals triggered over time at the regulatory sites. Data for 
all sites is in Fig. S7. Fig. 13 shows the monthly average MAB at the 
different sites for the framework-corrected data. The management 
framework was able to detect and correct the drift resulting in a MAB 
within 2 and 10 ppb at most times and sites, which was a clear 
improvement to the uncorrected NO2 MAB (up to 20 ppb) and consid-
ered satisfactory for an indicative air quality measurement (Snyder 
et al., 2013). Table 2 gives the statistics for each site averaged over the 
whole time of the study, and shows how the statistics improve at each 
step of the correction procedure. 

To illustrate the operation of the framework, Fig. 14 shows three 
examples: a site where the correction was satisfactory, though with a 
slight slope error (FONT); one where the sensor failed (MLVB); and one 
where the proxy selection was inappropriate for a particular time 
(CMPT, July: see also Fig. 13). Full data for all sites are given in 
Figs. S7–S9. For the sensor at FONT (correction and sensor satisfactory), 
Fig. 14 shows that the major variation over time was in the offset: indeed 
reflected in the MAB of the uncorrected data shown in Fig. 13. The two 
slope parameters were essentially constant and close to unity, with small 

fluctuations. The site and proxy distributions could be made almost 
coincident with a small alteration of response slope. The procedure 
resulted in the sensor data distribution being essentially coincident with 
the proxy distribution (evaluated over a month). For the sensor at MLVB, 
Fig. 14 shows a sudden and large jump in the offset during April which 
was associated with the start of a steady decrease in both the slope pa-
rameters. Inspection of the data showed the daily signal variations 
gradually decreasing towards zero. Although the correction in fact 
operated reasonably, clearly the sensor was failing, and there was an 
unknown event in mid-April that resulted in sensor failure. Monotonic 
change over time of the sensor parameters could be taken as indicative 
of sensor failure. For the sensor at CMPT, comparison of the data dis-
tributions given in Fig. 14 shows that, in July, the proxy and reference 
site distributions were very different. The procedure caused a bias in the 
sensor result towards the proxy with consequent over-estimation of the 
concentration. The response slope parameters both rose to values 
significantly greater than unity while the offset remained close to zero. 
The iterated minimum value of the objective function, DKL, between 
corrected sensor data and the proxy became significantly larger. A 
strong variation of both slope parameters without corresponding vari-
ation of the offset, together with an increase in the iterated minimum 

Fig. 11. Hexbin scatter plots showing the correlation of sensor NO2 with co-location reference NO2, where the sensor NO2 is derived first using the framework 
distribution matching method (Fig. 4 and eqs (7)–(10)) and the co-location reference NO2 and O3 data, then by correcting using the closest proximity other co- 
location reference site to estimate eS (eq (11)). 

Fig. 12. Illustrative examples showing the number of alarm signals generated 
by the low-cost sensor data in comparison with the proxy data (left-axis), and 
uncorrected vs. corrected mean absolute bias (MAB) running over 72 h of the 
low-cost sensor data with respect to the co-located regulatory station (right- 
axis). One sensor from each region; top: FONT with O3 and eS proxy MLVB and 
NO2 proxy SNBO; bottom: PICO with O3 and eS proxy CELA and NO2 proxy 
CELA (shown in the label at the top of each chart). 
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value of the objective function could be assumed as indicative of an issue 
with the proxy. Correlated variation of the slope parameters could be 
taken as indicative of an issue with over-fitting of the data. Rules could 
be added to the framework such that, if such occurrences were signalled, 
then the result using a different proxy could be obtained and compared. 

Fig. 15 shows hexbin scatter plots of the correlation between the 
corrected sensor data and the co-located reference station. A hexbin 
scatter plot for the entire set of corrected sensor data is also presented. 

The majority of measured NO2 concentrations were low, making the 
measurement task challenging. The hexbin plots show that the frame-
work correction was generally successful, though clearly less so at the 
MLVB and SNBO sites. As noted above, the sensor at MLVB failed during 
April. The variation of the derived parameters for SNBO (Fig. S8) indi-
cated issues with the proxy, which was confirmed by inspection of the 
frequency distribution of the NO2 concentrations at the proxy site and at 
the SNBO regulatory site during June and July, partly explaining the 

Fig. 13. Mean Absolute Bias (MAB) compared to uncorrected MAB per month for proxy-corrected data (‘Framework’) at the different sites.  

Fig. 14. a) Variation over time for three example sites of the fitted parameters: left, MLVB; middle, FONT; right, CMPT; top: offset, bb0, upper middle: slope parameter 
bb1; lower middle: slope parameter bb2; and bottom: the minimum obtained for the objective function, DKL between sensor data according to equation (2) and the NO2 
proxy. At the top of each panel is shown the site designation and the proxies for ozone (O) and NO2 (N). b) Distributions for the month of July of the regulatory station 
data, the proxy station data and the fitted sensor data (eq (6)), for sites at FONT (left) and CMPT (right). c) Time series for July comparing the fitted sensor data, NO2, 

corr, and the regulatory data at the site with which the sensor was co-located; FONT: left; CMPT: right. 
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lower success of the management framework for these months. NO2 
concentrations can vary considerably at the sub-kilometre scale and the 
success of the management framework strongly depends on the repre-
sentativeness of the land-use surrounding the reference sites for the low- 
cost sensor site that is calibrated (Li et al., 2019; van Zoest et al., 2019; 
Weissert et al., 2019). LAXH is the regulatory site at the Los Angeles 
airport and its proxy site (CMPT) is in central Los Angeles and may 
therefore not be a representative site for the local emissions at LAXH. 
Otherwise, Fig. 15 shows that the deviations about the 1:1 line were 
similar at all the sites. The RMSE for the individual sites varied between 
4 and 11 ppb (Table 2). In particular, the results obtained at the RIVR 
site with CELA as proxy show that a very distant proxy with similar 
land-use can indeed give satisfactory results. For all sensors and sites, 
the framework-corrected data had a RMSE of 7.2 ppb. Fig. S10 shows the 
error distribution segmented by concentration quartile, for the entire 
dataset. There was a small concentration-dependent bias and the error 
distribution was broader for the highest concentration quartile, as is 
expected as a consequence of the contributions of errors in estimation of 
offset and slope. A further analysis of the offset and slope errors is given 
in the SI (Figs. S11 and S12, and Table S3). The mean offset error for the 
different sites varied from 0.1 to 6.5 ppb (average across all sites 1.4 
ppb) with standard deviation from 2 to 6 ppb (average across all sites 4 
ppb). The mean slope error for the different sites varied from 0 to � 0.16 
(average across all sites � 0.05) with standard deviation from 0.03 to 
0.12 (average across all sites 0.09). The largest slope error was at the 
RIVR site (� 0.16) consistent with the slope error noted when the proxies 
were evaluated using reference site data (Fig. 7). 

The data allow us to address the question whether the error in the 
sensor-estimated concentration can be itself estimated knowing only the 

distributions of proxy concentration and sensor-estimated concentration 
over some time period, following the ideas set out in section 2.5. We 
have done this using data over each individual month. Fig. 16 gives the 
variation of the RMSE for each different month by site with the diver-
gence between proxy distribution and sensor estimate for that month. 
Fig. 16 shows that a large value of KS divergence between sensor and 
proxy signals a larger error in the estimated concentration. Use of both 
KS and Hellinger divergence may make the discrimination more clear. 
Comparison of Figs. 16 and 14 and Fig. S8 also confirms that a large 
value for the converged objective function when sensor correction is 
initiated (DKL, running over 3 days) signals a large error in the estimated 
concentration. In section 3.2, we showed that the proxy assumptions 
may not be valid at low wind speed when measured NO2 concentrations 
are mostly a result of local emissions that are likely different from those 
at the proxy site. We compared the fit between the corrected sensor NO2 
concentrations and the regulatory concentrations for different wind di-
rections and low versus high wind speed, but did not find any distinct 
patterns (Figures S13 – S16: hexbin scatter plots and error distribution 
across different wind directions/wind speed). The error distributions 
across the wind speeds and directions are close to Gaussian with a 
standard deviation not significantly different from the overall RMSE. 
Fig. 16 also shows that meteorological conditions signalled by the 
reference network as indicating that the proxy is not satisfactory did not 
necessarily lead to errors which were significant with respect to the 
other errors in the estimation. Finally, a very small divergence could 
mean that the model has been over-fitted such that the corrected sensor 
distribution agrees well with the proxy despite the true data distribution 
being different. The data distributions shown in Fig. S9 suggest an issue 
in some cases, but the dependence of the RMSE on divergence shown in 

Fig. 15. a) Hexbin scatter plots for the framework-corrected data for the individual sites of co-location, for the entire study period. b) Hexbin scatter plot for the set 
of framework-corrected data (all sensors, all sites). 

Fig. 16. Use of divergence measures between proxy and sensor-estimated concentrations to indicate the likelihood of larger errors in the estimated concentration; 
RMSE evaluated for each month at each site. Circled points are occurrences also marked by an unusually large value of the objective function used for the parameter 
determination (Kullback-Liebler divergence) Figs. 14 and S8: CMPT, July and SNBO, January). Points marked with arrows are occurrences where the proxy eval-
uation using the reference network indicated issues (RIVR and SNBO, June). 
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Fig. 16 does not indicate a problem. 
Variation of water vapour pressure is known to have a significant 

effect on electrochemical sensors – particularly changes of offset, βo (eq 
(6)), following rapid changes of humidity (Lewis et al., 2016). In 
Fig. S18, we show the distribution of the difference term between the 
framework-corrected sensor NO2 and the regulatory NO2 across 
different relative humidity quartiles. No distinct differences can be 
observed across different relative humidity quartiles, except at the 
highest, 71–100% RH, where the distribution may be bimodal, although 
there was no significant effect on the correlation with reference data 
(Figs. S17 and S18: hexbin scatter plots and error distribution across 
different RH bands). The error distributions are close to Gaussian with 
standard deviation not significantly different from the overall RMSE. 
Thus, the framework and offset error correction compensated for any 
effect of relative humidity variations. 

The higher RMSE shown in Figs. 15 and 16, compared to the RMSE 
using the co-located regulatory O3 and NO2 to correct the data, is mostly 
related to issues with the fitting procedure applied using the proxy data 
(e.g. at CMPT in July, Fig. 14b) or to missing data from the proxy site. If 
proxy data are not available then the method simply uses the latest 
determined parameters. Specifically, the correction for eS is not made. 
Inspection of the data showed indeed that the major error was due to 
incorrect estimation of eS. 

The potential of low-cost sensors to capture reliably episodes of high 
concentrations is of great importance for air quality measurements. 
Fig. 17 compares the number of times the low-cost sensor and the reg-
ulatory instruments recorded values > 75th percentile (20 ppb) per day 
and indicates that, in general, exceedances will be reliably indicated by 
the low-cost sensors managed as we have described (Spearman’s rank 
correlation coefficient: 0.81). Comparison with Fig. 15 shows that the 
‘false positives’ were associated with the site at CMPT, where, as noted 
above, the proxy comparison failed in July. 

3.5. Large local-scale spatial variations in nitrogen dioxide concentration 
revealed by the low-cost sensor network 

The purpose of the low-cost network has been stated as the supple-
mentary extension of a regulatory network to capture neighbourhood- 
scale variations. The method that we have described uses the regulato-
ry network both to determine and validate the choice of proxy, and then 
to use the proxy distribution matching to check and re-calibrate if 
necessary the low-cost sensor network. Indeed, the low-cost sensor 
network revealed significant NO2 concentration variations that were not 
captured by the regulatory network, as illustrated in Fig. 18a for one 
particular day, in Fig. 18d averaged over a month for specific hours of 
the day, and in Fig. S19 averaged over an entire month. The significance 
of the variations in relation to the measurement errors is assessed by 
comparison with the measurement error at particular reference sites at 
the same time (Fig. 18b) and by the mean and standard deviation of the 
error for each hour of the month determined at each reference station 
(Fig. 18c). There is no significant concentration-dependence of the error, 
which is indeed consistent with the analysis of the concentration- 
dependence of the errors given above and in the SI, and close to the 
RMSE determined for the entire study (7 ppb). Given that the error 
distribution is approximately Gaussian, as shown in Fig. S10, local dif-
ferences of 10 ppb could be discriminated with ~70% confidence and of 
20 ppb with ~90% confidence. Both high and low concentrations of NO2 
were very localized and transient, varying between extremes close to the 
highway network, varying significantly over relatively short distances 
and also tending to be higher near the mountains at the sides of the 
valleys. Given the errors, the magnitude of the variations is such that the 
network could nevertheless reveal the variations with confidence. We 
have in other work shown how to use data from the low-cost instrument 
network in this region alongside land-use correlations and wind speed- 
direction information to understand the spatio-temporal variation and 
identify specific, unusual features (Weissert et al., 2020) following ideas 
developed originally in Weissert et al., (2019). 

4. Conclusion 

In this paper, we have shown that useful and reliable data can be 
obtained from low-cost electrochemical NO2 sensors operated in a dense 
hierarchical network which has a limited number of high-quality, reg-
ulatory-grade measurement sites. We achieved a RMSE of ~7 ppb, 
which was adequate to resolve reliably the high spatial and temporal 
variation in NO2 concentration in the complex urban environment in 
Southern California. We used the regulatory sites as proxies, matching 
the probability distributions of sensor and proxy data running over a 
time window, to correct the sensor data. A satisfactory proxy could be 
identified by land-use similarity and could be a significant distance away 
from the sensor site. This is an extension of a management framework 
previously developed to detect and correct for drift in O3 concentrations 
measured by low-cost air quality sensors. 

When the management framework triggered an alarm, we minimised 
the Kullback-Leibler divergence between the distribution of the proxy 
data and the low-cost sensor data by adjusting of the sensor measure-
ment model parameters. A critical element was the use of a semi-
conducting oxide-based ozone sensor to provide a robust and reliable 
ozone signal to correct for ozone interferences on the NO2 sensor. The 
most significant effect on the error was an uncompensated variation of 
the baseline current of the electrochemical sensor on a timescale shorter 
than the distribution averaging timescale. This error was in part 
spatially correlated and had diurnal variations similar to the variations 
of ambient temperature, which allowed the error to be partially deter-
mined by using the closest proximity reference station with a co-located 
NO2 sensor as a proxy. Sensor failure could be distinguished through a 
characteristic time variation of the derived parameters of the sensor 
measurement model. The results also indicated that failures of this 
approach, likely due to issues with compensation of the temperature- 

Fig. 17. Comparison between number of hourly AQY and regulatory mea-
surements that exceeded the 75th percentile (20 ppb) per day across the whole 
study period (January to July) for all sites (Spearman’s rank correlation coef-
ficient: 0.81). There were up to 9 regulatory sites operating, hence a maximum 
of 216 hourly-averaged measurements per day. 
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dependent offset, parameter correlation, or to differences in local 
emission sources, or the lack of suitable proxy sites, could be signalled 
through consideration of the time variation of the corrected sensor pa-
rameters, of the value of the Kullback-Leibler objective function, and of 
other measures of statistical divergence between proxy data and cor-
rected sensor data. The simple rule-based framework is easily modified 
to change proxy or signal uncertainty when such conditions occur, and 
also when other factors arise, such as particular wind direction or speed 
conditions, where the proxy is known (from other assessment using the 
reference network) to be unreliable. While the method is robust, it does 
require a network of reference-grade instruments that is sufficiently 
diverse to sample all the environments within the zone to be measured. 
Since the method compares probability distributions running over time, 
it is robust against short stretches of missing data. However, the method 
does require data availability, not only from the low-cost network but 
also of ozone and nitrogen dioxide measurements from the reference 

network. 

Supplementary information 

Kullback-Leibler, Hellinger and Kolmogorov-Smirnov divergence: 
definition; LUR studies published for the North American region; Com-
parison of site monthly concentration distribution with a log-normal 
model; Comparison of land-use proxy result with closest proximity 
proxy result, using reference station data; Fitted parameter variation 
over time for all sites; Spatially-dependent offset error analysis; 
Framework-and offset error-corrected results for all sites; 
Concentration-dependence of the error; Correlation of framework- and 
offset error-corrected sensor data with reference data grouped according 
to different wind direction, wind speed and humidity; Example maps of 
variation of mean concentration of NO2 across the region; References to 
land-use studies of NO2 concentration in North America. 

Fig. 18. (a) Example of neighbourhood-scale variation in NO2 concentration, in the Riverside-San Bernadino region of Southern California, revealed by the low-cost 
sensor network, for three successive hours of a particular day. The reference network instruments and the concentration that they report are marked by the large 
circles. (b) Site concentration measured by the reference instrument at FONT, and the difference between the framework-corrected AQY result and the reference 
result at the same site, over the same day (20 June 2018). (c) Mean diurnal variation (line) and its standard deviation (shading) at all sites for each month (numbered 
1, January – 7, July 2018). (d) Map of the mean diurnal variation for June 2018 in the Riverside-San Bernadino region of Southern California, revealed by the low- 
cost sensor network. 
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