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ABSTRACT: Aiming at minimizing the costs, both of capital
expenditure and maintenance, of an extensive air-quality
measurement network, we present simple statistical methods
that do not require extensive training data sets for automated
real-time verification of the reliability of data delivered by a
spatially dense hybrid network of both low-cost and reference
ozone measurement instruments. Ozone is a pollutant that has a
relatively smooth spatial spread over a large scale although there
can be significant small-scale variations. We take advantage of
these characteristics and demonstrate detection of instrument
calibration drift within a few days using a rolling 72 h
comparison of hourly averaged data from the test instrument
with that from suitably defined proxies. We define the required
characteristics of the proxy measurements by working from a
definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged
ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope
or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower
Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can
identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant
reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices.

■ INTRODUCTION

This paper addresses the confidence with which data delivered
by a network of low-cost air quality measurement instruments
can be used to represent reliably local pollutant concentrations,
and presents ideas on the trade-off of minimum-cost design for
reliable high-density networks. Traditionally, financial and
logistical constraints have meant that air quality scientists and
managers have had to choose between very accurate high
temporal resolution measurements made at a limited number of
sites and low resolution low accuracy measurements made at a
much larger number of sites.1 This makes it difficult to resolve
accurately the complex patterns in urban air quality in time and
space, limiting the ability to identify, understand, predict, and
mitigate air pollution episodes.2 However, recent developments
of low-cost, easy to use sensors, often portable with minimal

power and environmental housing requirements, together with
advances in data management, processing, and communications
has made it financially and logistically conceivable to operate a
spatially dense network of monitors with high temporal
resolution.3−5 Such networks can have the potential to resolve
the complex spatial, and temporal heterogeneity of air pollution
concentrations in urban centers in near-real time6,7 and would
make it possible to answer new questions about the underlying
causes of poor air quality (ensuring more accurate modeling
and prediction at local scales), improve the ability to identify
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the links between air quality and human health (or environ-
mental degradation), identify potential air pollution “hot spots”
and enhance the ability to quantify the impacts of pollutant
mitigation techniques.5,8 These advances have been hailed as a
new paradigm in air quality monitoring, and welcomed as the
way forward by both air quality managers and scientists alike.2

However, the need for increased temporal and spatial
resolution of air quality monitoring data has made it very
tempting to proceed with such technology before its perform-
ance has been thoroughly assessed.5

One of the biggest challenges facing the successful adoption
of dense networks of low-cost instrumentation is the ability to
determine the performance of these instruments in urban
environments and the ongoing quality of the data during
deployment, in real-time and at minimal cost.9,10 To be
effective, users must have confidence that the data from any
instrument (including low-cost instruments) must be suffi-
ciently accurate and precise to meet the design criteria of the
network, and the limitations of the instruments need to be
clearly stated.1,11 To date there have been very few published
studies describing large-scale deployments of low-cost instru-
ments9,10,12 which also provide information or methodologies
for assessing the reliability of the data sets provided from these
instruments. Conventionally, confidence in the data from an
instrument is ensured by a regular program of calibration
traceable to reference standards.13−15 However, as the number
of devices in a network grows, the costs associated with such a
program of calibration and maintenance can become very large.
For low-cost instruments it is therefore useful to introduce a
new measure, that of instrument “reliability”, in order to
describe instrument performance.8,16,17 This measure is less
restrictive than compliance, but it does require clarity in its
definition such that users have confidence in the data within
known and defined constraints.
Reliability can be assessed using temporary or permanent

colocation of one or more instruments. There have been
studies using low-cost devices where the random colocation of
devices allows spot-checking of one against another.14

However, there remains the possibility that unusual trends in
a monitor which is not currently colocated against another may
be misinterpreted erroneously as either fluctuations in environ-
mental processes or as instrument error. Reliability can also be
assessed using computational techniques to detect and

compensate for changes from an expected pattern,18 and for
specifically defined instrument conditions.19,20 These methods
generally assume either a model for the phenomenon being
sensed, typically exploiting correlations across the network, or a
model for the behavior of the sensor within the instrument.
Simple multivariate time series, principal component analysis,
or “soft sensor” methods that we21 and others13,22−25 have used
before require a long time run of data to establish the model
from which drifts and malfunctions can be detected. General
limitations of such approaches include the accuracy and
reliability of models (and the data they are built upon) and
their stability over time, which all methods suffer from to some
degree.
Here, we develop a simple framework within which to

address these issues, from consideration of data delivered by a
three-month installation of a network of low-cost ozone
monitoring instruments deployed over the Lower Fraser Valley
(LFV), British Columbia, including the Vancouver urban area
(Figure 1). We develop the framework so that general
qualitative knowledge can be used, both about the spatiotem-
poral behavior of the pollutant and about the performance
characteristics of the measurement system, which encompasses
the instrument and its sampling system and the location
characteristics. To do this, we reflect on the stated purpose of a
dense low-cost network. Following Snyder et al.5 we specify this
network as supplementing a compliant ambient air monitoring
network, extending coverage and providing reliable information
for communities, including improved local coverage for
exposure assessment and enhancing source compliance
monitoring. For these purposes, reliable determination of the
short-term statistics of the ozone concentration is required: for
example, the proportion of hourly average values that are above
a threshold. Here, the instrument response time can be
assumed fast enough that each measurement is not affected by
the preceding measurement. So although ozone generally
follows a smoothly varying time series, for verifying instrument
performance against the stated network purpose we can also
treat it as a probability distribution, ignoring time variation. We
argue that reliability can be assessed using an appropriate proxy,
which is not a prediction of the air pollution concentration
field, but instead is a model for the statistics of the pollution
field. Simple statistical tests can then be used to answer the
binary question: “does the instrument need maintenance or

Figure 1. Location of the reference sites discussed in the text. Information on land-use can be found in ref 36. Circled locations are the sites used for
method performance, with others serving as proxies.41 The map was created using using the R package “ggplot” and “ggmap”.48
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not?” We emphasize that, although we base our proxy on the
statistics of the pollution field, the proxy specifically is not a
model of pollutant concentrations in time or space. Based on
the proxy comparison, we reduce “reliability” to a binary
decision: the data are considered reliable, or they are not and
some action is required. Action can include further inspection,
to determine whether it is the instrument or its local
environment that has changed, or whether recalibration or
replacement of the instrument is required. If the data are
considered reliable then they are taken as representative of a
“ground truth” measurement of the concentration field. Thus,
this approach is different in principle from ideas of “blind” or
“semiblind” calibration which assume that a set of devices is
measuring a common field and then attempt to adjust
individual calibrations in order to achieve consistency of the
estimated field.26 It is also different from ideas which utilize a
large number of low-accuracy instruments to generate an
approximate estimate of a field or to detect and locate an
unusual perturbation.27 The aim here is to make minimal or no
assumptions about the behavior of the device and as few
assumptions as possible about the phenomenon being
measured, consistent with the need to establish confidence in
the data. Prior knowledge, such as the known general
dependence of air quality on land-use or location or weather
patterns, is incorporated in our approach through the
appropriate choice of proxies. This approach can be interpreted
as assessment of the conditional probability distribution of the
data from any given instrument given by the proxy. Formally,
this would require the modeling of conditional distributions in
a Bayesian framework. Bayesian analysis has been widely used
in fault detection algorithms of sensor networks27,28 as well as
air quality models.29 However, full Bayesian analysis focuses on
modeling the posterior distribution (here, the conditional
probability of data given by the proxy) by training the model
and by hierarchical learning from the historic data,27,29 making
assumptions about the statistical characteristics of the data (for
example, the covariance structure of the data29) or data
discretization.28 This approach generally requires large training
sets of data. Although the aim of this paper can be interpreted
as a Bayesian approach, in contrast to a full Bayesian analysis we
aim to make minimal assumptions about data characteristics, to
avoid the need for assessment of conditional probability
distributions based on large data sets accumulated over long
periods of time, and to develop a method that can be applied
essentially in real time.
In this paper, we first formally define the required

characteristics of a proxy in relation to the statistical tests to
be used to determine whether, by comparison with the proxy,
data from any given instrument are considered to be reliable.
Then we develop the idea that suitable proxies can be
established using land-use and location information. We
compare data with a proxy using an approach qualitatively
similar to the use of control charts in industrial process
control.30,31 We first test the speed and reliability with which
the methods detect instrument failures by using data from low-
cost instruments colocated with reference stations. Then we
extend the evaluation using reference stations with which
instruments are not colocated, comparing the results with those
for colocation. Finally, we evaluate using only the network of
low-cost instruments. In this way, we demonstrate the
possibility of having a minimal set of compliant reference
instruments, along with data from a much more extensive
network of low-cost devices, in order to capture an area’s air

quality with the best outcome on trade-off between coverage,
cost and reliability.

■ MATERIALS AND METHODS
1. Data. The data analyzed were from a spatially dense

network of low-cost ozone instruments using gas-sensitive
semiconducting oxide sensor (GSS) technology deployed in
the Lower Fraser Valley (LFV), British Columbia, from May-
November 2012. The LFV has a well-established and well-
maintained network of reference stations against which the
performance of the GSS instruments was assessed.9 The GSS
network in total involved 50 different sites and 58 different
instruments, a subset of which was used for the present paper.
In the previous work, we established acceptance criteria for the
data based on qualitative inspection of the derived ozone data
and on the variation of the raw resistance data from the GSS
instruments utilizing knowledge of the effects on the signal of
known failure modes of the devices (microstructure change in
the sensor element; air flow rate fluctuations and failures of the
air intake pump; variations in the sensor temperature control;
deposition of dirt causing ozone decomposition in the inlet
filter, in the sampling lines and on the internal surfaces of the
sensor) as described in detail in Williams et al.32,33 Some
examples are given in the SI. The determination of failure (or
not) by these methods is referred to in the present work as
“single sensor assessment”. Approximately 50% of the devices
deployed were recorded in this way as “failing” at some time
during deployment: some from sensor failures and many from
the effects of dirt and insects either in the air inlet or deposited
onto the sensor. Nine GSS instruments were colocated with
reference stations and deployed for long periods (locations in
the SI). These data were used in the present work in order to
compare the colocated reference results with failures recorded
with respect to different choices of proxy. The open-source
statistical software package ‘R’ was used for all calculations
(version 3.2.2).

2. Formal Definition of a “Proxy” and Definition of
“Failure” of an Instrument, Evaluated with Respect to
the “Proxy”. Let Yk(t) denote the ozone concentration
measured by the instrument and Xk(t) be the true ozone
concentration at the instrument inlet, at location k and time t.
Formally, we can consider that Yk(t) is a predictor of Xk(t), or
we can consider that the conditional probability distribution of
Yk given Xk is stable and time-invariant; in other words,
although the ozone concentration (actual or measured) is
highly time varying, the measured process conditional on the
underlying actual process is stationary, provided that the data Yk
are measuring reliably. Of course, the reliability of Yk(t) cannot
be assessed directly, since Xk(t) is by definition unknown.
Hence we seek some proxy, Zk(t) against which Yk(t) can be
assessed. As noted in the Introduction, we’ve defined the
purpose of the network as supplementing a compliant ambient
air monitoring network, specifically to provide reliable local
determination of the short-term statistics of the ozone
concentration. Hence first we develop a proxy comparison
based on these short-term statistics.

a. Assessment Based on Running Probability Distribution
of Data. Let FXk(x; t1,. . .,t1 + td) denote the empirical
cumulative distribution (ECD: see SI) of Xk(t) obtained over a
time index td (an integer that counts the time steps of
measurement) running over the data stepping by one time step.
We define the purpose of the network to be to deliver a reliable
local estimate of FXk(x; t1,. . .,t1 + td). The data, Yk(t) and the
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proxy, Zk(t) provide two different estimates, FYk(x; t1,. . .,t1 + td)
and FZk(x; t1,. . .,t1 + td), of this distribution, and we compute
the running two-sample Kolmogorov−Smirnov (K−S) proba-
bility with which the two estimates reflect the same underlying
distribution. The number of time steps, td, used for the
determination of the distribution is empirically chosen to
obtain a reasonably representative estimate of the variation of
the ozone concentration that is sufficiently large that the
distribution is well estimated and missing values have a small
effect, but sufficiently small that action can be taken in a
reasonable time depending on the result of the test. In the
present work, we have used hourly averaged data for Yk(t) and
Zk(t), and so the time step is 1 h.
Let pKS*(Zk,Yk) denote the critical value for the K−S statistic.

If pKS(Zk,Yk) > pKS*(Zk,Yk) then FYk(x;, t1,. . .,t1 + td) and FZk(x;
t1,. . .,t1 + td) can be considered to be estimates of the same
distribution. In this case, the instrument is then considered to
be functioning as expected (termed “intact”) and we take Xk(t)
= Yk(t) over the interval (t1,. . ., t1 + td). However, if pKS ≤ pKS*,
then an alarm is signaled. Either the instrument is not intact (a
“true alarm”) or the local environment has changed either with
respect to the proxy or to the measurement location, or the
proxy is not suitable for ozone concentration variation at the
measurement location (a “false alarm”). A criterion has to be
defined to discriminate in a practically acceptable way between
these two alternatives. Site-specific, weather-specific, and large-
scale event-specific phenomena can be expected when analyzing
air quality time-series, and so periodic alarms may occur even
for intact measurements, where the proxy signal is not a suitable
estimator for FXk(x; t1,. . .,t1 + td). For such variations, if the
low-cost instrument were intact, then while an alarm might be
signaled, after some time pKS could be expected to once more
increase above the threshold. However, for instrument failure
a drift or sustained change in calibration parametersthen a
clear and sustained pattern of change in FYk(x; t1,. . .,t1 + td)
with respect to FZk(x; t1,. . .,t1 + td) would be observed and
hence a sustained pattern of change in pKS. We therefore define:

≠ < * >X t Y t p p t t( ) ( ) if fork k KS KS f (1)

where the time index, tf, is considered sufficient for confidence
that the two distributions remain different, and is empirically
determined. The threshold probability, pKS*(Zk,Yk) and the
averaging time, td, are also to be specified.

b. Assessment Based on Mean and Variance. Instrument
calibration during manufacture or installation establishes Yk(t)
as a linear predictor of Xk(t):

= + +X t a a Y t e t( ) ( ) ( )k k Y k0 1 , (2)

where, immediately following the calibration within some
acceptable specification and with some certainty, the offset, a0
≅ 0 and the slope, a1 ≅ 1, and the error term, eY,k is a white-
noise process with no nonlinear ozone concentration depend-
ence, mean = 0 and variance that satisfies some specification on
the required accuracy of the measurement. The assessment of
whether the data are reliable then becomes an assessment of
whether any drift in the parameters a0, a1, and eY,k remains
within bounds defined by the network specification. We suggest
that the absence of long-term drifts in a0, a1, and eY,k can be
detected by choosing a proxy whose mean μ(Zk(t1,. . .,t1 + td))
and variance var.(Zk(t1,. . .,t1 + td)) evaluated over the interval
(t1, . . ., t1+td) satisfy:

μ μ+ ≅ + +X t t t b b Z t t t( ( , ..., )) ( ( , ..., ))k k1 1 d 0 1 1 1 d (3)

+ ≅ +
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X t t t b Z t t t

e t t t
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1 1 d 1
2
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where a good proxy implies var.(eZ,k) ≪ var.(Zk) and the
parameters b0, b1, and var.(eZ,k) at most fluctuate within defined
bounds over the observation period. An example of such a
proxy would be a signal that was a linear transformation of
Xk(t) with some transformation of the time scale such as a
phase delay. From eq 2, μ(Xk) = a0 + a1μ(Yk) and var.(Xk) =
a1
2var.(Yk) + var.(ek) so given the definition of the proxy (eqs 3
and 4 ) we define estimators for the slope a1̂ and offset a0̂ as
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where we have assumed that in normal operation the
instrument variance is much less than the proxy variance. We
track the variation of a0̂ and a1̂, determined over time, td, where
an alarm is signaled if these quantities move out of defined
bounds, which are now specified based on an acceptable
instrument specification for the error in a0 and a1. As discussed
above, the assumption is that the parameters associated with
the proxy will in general remain bounded and not systematically
drift. Hence if a1̂ and a0̂ remain outside the bounds for time t >

tf then either Xk(t) ≠ Yk(t) (i.e., a0 ≠ 0 and/or a1 ≠ 1 within the
bounds of the instrument specification), or Zk(t) has ceased to
be a good proxy.

3. Choices for the “Proxy”, Zk(t). One approach to
obtaining Z(t) is to develop a spatiotemporal model for the
ozone field. Here we develop a different and simpler idea. A
type of remote proxy is required in order to evaluate each
sensor site and so variables with associations with ozone were
assessed. If a general variable could assist in explaining ozone,
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then this could be used to guide proxy selection. Ozone
concentration is primarily driven by sunlight, motor vehicle
traffic density and location with respect to prevailing wind
direction over the urban center.34,35 Because ozone concen-
tration is usually low at night and has a diurnal variation
reflecting sunlight intensity, the daily mean value also reflects
the daily range of values. Land-use regression (LUR) is a
statistical technique that has traditionally been used to estimate
local pollutant concentrations using surrounding land-use,
traffic characteristics, and observed concentrations. Typically
in these models, high-resolution land-use data is used as a proxy
for estimating the strength of local emission sources. As such,
LUR techniques have been used to estimate the spatial
distribution of primary pollutants36 and in the context of the
LFV for ultrafine particles,37 oxides of nitrogen and fine
particulate matter38 and wood smoke.39 Because ozone is a
secondary pollutant, whose peak daytime concentration can be
dependent on nonlocal emissions, meteorology (including wind
speed, direction, mixed layer depth), and day-to-day hand over
processes, LURs have traditionally not been used in ozone
exposure assessments. While Kerchoffs et al.40 used LUR for
their ozone exposure assessment over The Netherlands, their
analysis was used to estimate the spatial distribution of long-
term (two-week average) concentrations, and was not able to
resolve the high temporal variability seen in urban ozone
concentrations. Nevertheless, their analysis showed that long-
term mean ozone concentrations are correlated to site
descriptions, such as land-use and location36 and in the present
analysis, we exploit this association to develop improved
proxies for the statistics for short-term (e.g., hourly resolved)
ozone concentrations within the LFV. Specifically, we propose
that a proxy based on similar land-use to the location to be
assessed could satisfy on average both the condition of a stable
conditional distribution required by method (a) above and the
condition of a stable relationship of mean and variance required
by method (b). Thus, we evaluate the choice of Zk(t) as a
reference station signal or a network median having similar
land-use to the location, k. Furthermore, simple general land-
use descriptors appeared to be sufficient: ozone measurements
from different instruments in the same general land-use
appeared to be highly correlated and those in different land-
uses to be distinct (SI).9 Therefore, we explored the use of
simple land-use descriptors to establish the proxies.

Site descriptions for a regression analysis were based on a
detailed report of the local air quality monitoring station
characteristics41 and had variables inlet height, elevation, land-
use (three buffers), population density (two buffers), and
orientation toward the downtown Robson Square station,
which is situated close to the center of the region’s precursor
emissions footprint. Ozone data was from 20 MetroVancouver
sites over the three-month GSS instrument deployment, with
both daily (91 days × 20 sites, n = 1840) and total (n = 20)
concentrations considered. The variable with the highest R2 for
both daily and total was land-use category within 1 km radius of
each station (0.18 and 0.62 respectively). Addition of other
possible variables did not improve the regression, which may be
due to small variability in values (e.g., inlet height mostly
around 4 m), multicollinearity issues (e.g., population density
Variance Inflation Factor > 3), or uneven distribution of
categories (e.g., 12 sites were South-East or East of Robson
Square). The layout of the LFV could be confounding as highly
urbanized/commercial areas were close to the sea, and
residential areas were predominantly inland and downwind
from the prevailing wind. From this, four broad land-use
categories were derived from the MetroVancouver report to
represent the locations of the GSS instruments at a 1 km buffer
(agricultural, commercial, residential, and rural). The category
“rural” is not an official category; however, as the network
objective was to extend the current scale, many GSS
instruments were located on the outskirts of the LFV. To
establish the appropriate category for the GSS instrument
locations which did not have land-use designations, aerial
imagery was compared with aerial imagery against the selected
reference sites (Table 1). Four different proxies were evaluated
using hourly averaged data:

(1) The colocated reference data: this should give the most
reliable indicator of instrument performance, against
which the other proxies and the performance of the data
assessment methods can be evaluated;

(2) A nonco-located reference station in the same land-use
classification as the instrument under assessment;

(3) A nonco-located reference station in a different land-use
classification;

(4) The hourly median value of all intact low-cost instru-
ments in the same land-use classification as the
instrument under assessment.

Table 1. MetroVancouver Reference Monitoring Station Characteristics for the Co-Located Sites and the Selected
Representative Land-Use Sitesa

co-located reference monitoring stations other reference stations

station Abbotsford Langley
Maple
Ridge

North
Delta

Pitt
Meadows

Port
Moody

Richmond
South

Second
Narrows

Surrey
East Hope Air

Richmond
Air

station number T33 T27 T30 T13 T20 T9 T17 T6 T15 T29 T31
latitude (N) 49.043 49.096 49.215 49.158 49.245 49.281 49.141 49.302 49.133 49.370 49.186
longitude (W) 122.310 122.567 122.582 122.902 122.709 122.849 123.108 123.020 122.694 121.499 123.152
elevation (m amsl) 58 88 50 113 4 6 4 4 79 40 1
population (within 1
km)

8894 1089 8501 11229 203 2882 11247 1125 8534 204 850

land-use in this study “res” “res” “res” “res” “agr” “com” “res” “com” “res” “rur” “com”

land-use (%
within 1
km)

agr. NA 30 5 0 85 0 10 0 2.5 NA 0
com. NA 0 10 10 13 12.5 0 40 0 NA 85
res. NA 60 60 75 0 12.5 75 10 90 NA 0
other NA 10 15 15 2 75 15 50 7.5 NA 15

a“agr.”, agricultural; “com.”, commercial; “res.”, residential; “rur.”, rural. The “other” land-use category is for surroundings such as water and park.
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For each proxy Zk(t) control charts of pKS and of a1̂ and a0̂
were constructed. A sensitivity analysis was carried out to
establish the values for the averaging time index, td, where td =
72 h was selected (SI). The failure time, tf, was evaluated by
consideration of the fluctuations associated with different
proxies and is discussed later, with tf = 120 h selected. The
selected exceedance thresholds that were required to be defined
for sensor drift detection in (a) and (b) were pKS* = 0.05, a1̂ 1
± 0.3 and a ̂0 0 ± 5 ppb based on the maximum variability for
transfer standard accuracy (a0̂) and for indicative measurement
(a ̂1) suggested by the U.S. Environmental Protection
Agency.16,42 The results for data acceptance were compared
with the single sensor assessment.

■ RESULTS
Reference Station As “Proxy”. Inspection of the

colocated GSS instrument time-series showed all the GSS
instruments having excellent agreement with the reference data
at the beginning of the monitoring period (SI). Four
maintained this agreement throughout and five showed a
change relative to the reference data. Three colocated sites
(Abbotsford, “abb”; Maple Ridge, “map”; and Surrey East,
“sur”) were selected to illustrate relatively good, poor, and
excellent performance of the GSS instruments (Figures 1 and
2). Figure 3 presents the respective control charts for pKS, a1̂

and a0̂ using the three different reference station proxies. For
Surrey, a stable GSS device is indicated by the comparison with
the local reference station and by the comparison with the
remote proxy in the same land-use. However, the remote proxy
in different land-use showed oscillations in the parameters that
crossed the thresholds, particularly for the time around July 9th
when forest fires in Siberia caused elevated ozone over
Vancouver.43 At Maple Ridge there was a clear change in
GSS behavior, consistent with a change in a1 which was
signaled by all three proxies, and which was detected at a date
earlier than that indicated by the single sensor assessment. For
Abbotsford, a subtle drift was flagged using the local reference
station proxy but was not flagged by the remote reference
station proxies. The single sensor assessment also did not
detect the drift. Close inspection of the Abbotsford time series
(Figure 2) shows the apparent drift to be caused by the GSS
instrument late in the month reporting lower nocturnal ozone
readings than those recorded by the local reference instrument.
Table 2 compares the failure time determined by each of the
three measures at each of the nine reference locations along
with the failure time determined by single sensor assessment.

Network Median As “Proxy”. Figure 4 shows pKS, a1̂ and
a ̂0 for four different residential reference stations as the signal
Yk(t) against the median signal for that part of the GSS network
in the residential land-use (n = 18 instruments, locations in S.I.)

Figure 2. Top: Time-series for the three selected sites discussed in the text where low-cost GSS instruments were colocated with reference stations.
Bottom: Comparison of the 72 h empirical cumulative probability distribution of ozone measurement from the reference instruments and the
colocated GSS instruments at the beginning and end of the assessment period (first period: 29 June to 1 July 2012; last period: 28 to 30 July 2012).
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as a proxy, Zk(t). Some of the GSS devices failed during the
period, and were removed from the median calculation when
that happened. This assessment both tests the variability of
signals within a given land-use classification and the usefulness
of the network median as a proxy. The parameters for the
different stations showed oscillations, which exceeded the
thresholds but not for a sustained time, most notably around
the time of the Siberian fire impacts, which was also a period of
high ozone concentrations.
An alternative way to evaluate “failure” would be simply to

count the fraction of the total number of estimators at any
given time and take this as an empirical probability of failure, pf
(reliable data is then 1 − pf). The residential GSS instruments
and those colocated at reference stations were evaluated using
this technique for the month of July (Figure 6). For this
evaluation, the single sensor assessment method has been
included as a measure, and the failure data for this method is
marked on the plot using a large symbol. Clear failures were
signaled by a rapid fall with time in (1 − pf) where all measures
indicated failure within less than 1 week. This approach
resolved some of the inconsistencies in Table 2 and so seemed
more robust than simply taking a single measure. For some

devices, however, the fall with time in (1 − pf) was rather
slower and did not immediately correspond with indication of
failure by the single sensor assessment method. This may
indicate either a slow and subtle drift in the device
characteristics or a slow change in the environmental
conditions at the specific locality with respect to the proxy.

■ DISCUSSION
Three major questions are investigated in this paper: can the
use of simple statistical comparisons with proxies provide a
reliable framework for continuous, automated, quantitative
assessment of data reliability from dense networks of low-cost
ozone measurement instruments; can such comparisons work
reliably without extensive training data and preferably with a
rolling time window that is relatively short; and can suitable
locations for reference stations to provide proxy data for a high-
density network of low-cost instruments be specified based on
land-use criteria? Our results show that instrument failure can
be identified reliably using simple statistical comparisons
between low-cost instruments and suitably chosen proxies,
specifically through the use of a remote reference station having
the same land-use as the low-cost network instruments. The

Figure 3. Control charts for the three selected sites using the proxies: colocated reference station, remote reference station with a similar
surrounding land-use (residential: Langley), and remote reference station with a different surrounding land-use (commercial: Vancouver Airport).
Horizontal lines represent designated thresholds for pKS, a ̂0, and a ̂1 and the vertical dashed line for Maple Ridge is where single sensor assessment
identified sensor drift.
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Table 2. Drifting Dates for the Nine Co-Located GSS Instrumentsa

sites

verification
method

verification
threshold Abbotsford Langley

Maple
Ridge

North
Delta

Pitt
Meadows

Port
Moody Richmond

Second
Narrows

Surrey
East

single sensor S.S.A. OK 13-Jul 16-Jul 9-Jul 19-Jul 17-Jul 26-Jul OK OK

co-locate â0 OK OK 12-Jul 5-Jul 24-Jul 20-Jul OK OK OK
â1 OK 15-Jul 13-Jul 6-Jul 22-Jul 21-Jul OK OK OK
pKS OK 12-Jul 13-Jul 18-Jul 12-Jul 24-Jul 27-Jul 26-Jul OK

different land-use â0 OK OK 24-Jul 8-Jul 13-Jul 23-Jul OK 14-Jul OK
â1 12-Jul 24-Jul OK 8-Jul OK 31-Jul OK OK OK
pKS OK 20-Jul 23-Jul 18-Jul 28-Jul 5-Jul 27-Jul 5-Jul OK

similar land-use â0 OK OK 15-Jul 1-Jul NA NA OK NA OK
â1 OK 15-Jul 17-Jul 1-Jul NA NA OK NA OK
pKS OK 12-Jul OK 8-Jul NA NA OK NA OK

network â0 OK OK OK 8-Jul NA NA OK NA OK
â1 OK OK OK 8-Jul NA NA OK NA OK
pKS OK 19-Jul 18-Jul 13-Jul NA NA 27-Jul NA OK

aOK is where instruments were labelled as intact and NA is where instruments were not in a residential land-use. Verification thresholds are for
single sensor assessment (S.S.A.), K−S probability (pKS), and assessments using the mean and variance (a ̂0, a ̂1).

Figure 4. Control charts for four different reference stations (locations in Figure 1) in the “residential” land-use category using the residential GSS
network median as a proxy.
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results show that, using these methods, instrument calibration
drift can be discovered on a time scale of less than 1 week
through the use of a 72 h comparison rolling hourly. The
hypothesis that periodic natural variation in pKS, a ̂1 and a0̂ from
site-specific variability would be present in stable instruments
was confirmed. This expected behavior could be distinguished
from systematic drift of a measurement instrument by the
length of time for which the thresholds were exceeded. This
means that one can reasonably define a failure time, tf, to
discriminate instrument drift from local variations (see SI).
Table 2 shows that this choice led to reasonable consistency of
the time of failure indication between the colocated references,
the proxies based on the same land-use and the single sensor
assessment. Variation was observed to increase, although it
remained periodic, if the proxy was not in the same land-use
category as the sensor and so false alarms could result if tf was
not sufficiently long (Figure 3). However, if tf was sufficiently
long then, even in this case a stable device such as that at Surrey
would be correctly classified and failures correctly identified.
The use of the residential low-cost network median as a

proxy against reference stations (Figure 4) showed that the
low-cost network median was a stable proxy, and second that,
although there was variability between the signals from the
reference stations within the “residential” land use classification,
the variability was periodic and only occasionally triggered an
alarm which was in any case generally not sustained for longer

than tf. That is, the false alarm rate for the methods seems
acceptably low given a reliable land-use classification upon
which to base the proxy.
Figure 5 shows, for the 18 GSS instruments in the residential

category that were not colocated with reference stations, a
comparison of failure detection by single sensor assessment
with that determined by each of the three methods with two
different proxies: reference station in the same land-use, and
residential GSS median. For each measure, as devices failed
they were removed from the median calculation. The results
indicate that pKS and a1̂ for both proxies tended to overestimate
drift and a ̂0 underestimated. Such effects would however be
sensitive to the arbitrary choice of thresholds. Some of the
differences between single sensor assessment and the signaling
of failure were tracked to an incorrect GSS calibration (one
case), the GSS instrument was at an elevated site (one case), or
that the GSS instrument was near the edge of the LFV air-shed
(one case).
A layered approach to failure identification like the one

proposed here could exploit the strengths of each test, and
provide better support for drift detection than just one method.
A combination of a network median in the same land-use and a
reference station in a different land-use as proxies might be a
way of using these ideas to work with a network with a lower
density of reference stations. These ideas could be extended

Figure 5. Number of accepted GSS devices in the “residential” land-use category over time, evaluated using the different measures, with either
reference station in the same land use as proxy or median of accepted instruments in the same land use as proxy. Single sensor assessment is included
as the black dashed line.
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into a Bayesian formulation that better weighted the different
estimators.
The GSS network data also illustrated the potential

difficulties associated with siting that could affect results. An
example is the subtle drift of the GSS instrument at Abbotsford
when it was evaluated against the colocated proxy. Data were
accepted by all the other proxy methods and by the single
sensor assessment. Examination of the ECD showed this was
due to an apparent under-indication of low ozone concen-
trations by the GSS instrument relative to the local reference
station for some nights. The GSS instrument, however, was
mounted behind the roof lip of the reference station, which was
near a wooded area and beside a large car park, whereas the
reference inlet was mounted on a mast above the roof. It is
quite possible, therefore, that the GSS instrument was indeed
sampling lower concentrations on some nights when the air was
probably still.
The ideas developed in this paper point to the feasibility of a

monitoring network that combines a small number of
compliant reference stations with a large number of low-cost
instruments. It would seem reasonable to propose that a few
well-maintained reference stations could be used to check
network average proxies, and that these proxies could be used
to check individual instruments. A network may then not
necessarily require a well-maintained reference station in each
land-use category. Instead, a network average could be used for
each individual category and checked against a reference
instrument in other land-use categories. Indications from
different proxies could be combined as illustrated in Figure 6.

In this way, the network costs, both of capital expenditure and
maintenance, to achieve the purpose of providing adequately
reliable data could be minimized and wide coverage secured. As
the methods here use simple thresholds, they can easily be
automated.
While LUR models can explain a substantial fraction

(typically 50−80%)36,40,44 of concentration variability for
primary pollutants, it is likely that some of the unexplained
variability stems from the lack of meteorological processes

included in LUR modeling. As such, simple improvements to
LUR models have been made through incorporating meteoro-
logical processes. For example, Larson et al.39 use noncircular
buffers in their wood smoke analysis in an attempt to capture
nocturnal drainage effects; Ainslie et al.45 used buffers whose
size is governed by local wind speed and atmospheric stability
to capture the source-receptor nature of atmospheric
dispersion; and Su et al.46 included wind speed, direction and
cloud cover in the regression analysis in order to improve the
temporal and spatial variability of the modeled concentration
fields. We speculate the ability of our method to assess network
reliability might similarly be improved through some simple
incorporation of meteorological processes in our proxy
development. Ozone is a pollutant that has a relatively smooth
spatial spread over a large scale although there can be
significant small-scale variations. The use of remote proxies
that are rather widely spaced has clearly worked well in this
case. Pollutants such as nitrogen oxides have a very large spatial
variability so it remains an open question as to the utility of the
methods we have described for these cases, particularly the
spatial density that would be required of the network. Recent
work, however, points to the utility of LUR on a local scale for
elucidating explanatory urban design variables that can account
for a significant part of the local variability47 and that therefore
in principle can be used to develop proxies.
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