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Abstract: The strong temporal and spatial gradients in NO2 concentrations frequently observed in urban mi-
croenvironments are very difficult to measure and model accurately. Recent developments in low-cost air quality
instruments have led to improvement in the spatial coverage of time-resolved measurement, however inter-
polation is still needed to map pollutant concentrations and connect time-as well as space-dependent variations
to urban design features. Here we propose a novel approach that uses a previously-described microscale land use
regression (LUR) model to spatially interpolate data from a well-calibrated network of low-cost air quality in-
struments. We use a semiconducting oxide-based ozone sensor to provide a robust correction of the output of an
electrochemical NO2 sensor for ozone interference. We characterise signal noise probably associated with me-
niscus fluctuations as a significant error source, that can be handled with appropriate signal averaging. The LUR
model is used to provide high spatial resolution in the data set, whilst correlation with sensor measurements
provides a time-dependent estimate associated with different land use types. Observations from the network of
instruments showed marked variability in NO2 concentrations over short distances (on the scale of 100m), with
highest concentrations reached near bus stops, intersections and under shop awnings. This approach connects
the complex time- and space-dependent variations to urban design features and is a promising way forward as a
basis for objective spatial mapping of time-dependent mean concentration fields and local population exposure
estimates.
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1. Introduction

Epidemiological studies often use modelling techniques, such as
land use regression modelling or dispersion modelling, to quantify
pollutant concentrations (Hoek et al., 2008; Vardoulakis et al., 2011).
Land use regression (LUR) models are suitable for mapping air pollution
with minimal additional data acquisition and are therefore a low-cost
alternative to fixed monitoring (Jerrett et al., 2005). However, standard
LUR models lack information about temporal variability particularly at
the daily, hourly and sub-hourly scales. Land use regression studies also
generally focus on city and regional scales where the explanatory
variables have large spatial scale. The spatial resolution of the models is
km and not representative of microscale environments (Mukerjee et al.,
2012; Weissert et al., 2018). Thus, recent studies have focussed on
urban design as a driver of air pollution. ‘Microscale’ LUR models have
been developed that emphasise local urban design variables (Miskell
et al., 2015; Weissert et al., 2018). The distance scale of these models is
50m and, indeed, over such small distance scales the variations are
significant. To improve the temporal resolution of LUR models, pre-
vious studies have shown some success using temporally dynamic
predictor variables (i.e. traffic, meteorology) (Masiol et al., 2018;
Miskell et al., 2018b; Son et al., 2018; Yeganeh et al., 2018). This ap-
proach may be limited by the availability of such data at a high tem-
poral and spatial resolution. Other studies have linked regulatory
monitoring data with the output from LUR models (Cordioli et al.,
2017; Johnson et al., 2013; Nethery et al., 2008; Slama et al., 2007).
However, regulatory monitoring networks are typically sparsely dis-
tributed across urban areas and data from just one or two sites are used
to calibrate LUR models (Cordioli et al., 2017; Johnson et al., 2013;
Slama et al., 2007). Consequently, these approaches are based on the
assumption that temporal variability is the same across large areas
(Cordioli et al., 2017; Johnson et al., 2013).

The central question of our research is how to assess the full spatio-
temporal pollution field on hourly timescale or shorter, updated at a
minimum hourly, and on distance scales of 50m.

Using nitrogen dioxide (NO2) measurements from a pilot study
undertaken in Auckland, New Zealand, we show that results from low-
cost instruments have sufficient accuracy and precision to resolve
spatial variations, then show how to combine results from a network of
low-cost instruments with a microscale LUR model in order to estimate
the hourly mean concentration at a high temporal and spatial resolu-
tion, taking into account the effect of land use variables. The results
provide important insights into site-specific effects on the temporal
variability of NO2 concentrations.

2. Theory

We used a microscale LUR model (Weissert et al., 2018) and a
network of low-cost instruments to derive a LUR model that is updated
hourly and to identify site-specific effects (e.g. interaction of bus stops
and traffic lights at different times of the day).

Let c̄LUR i, denote the long-term time-averaged concentration at site i
modelled by LUR, using data z[ ] measured by diffusion tubes. The LUR
model is fitted by linear least-squares regression:

= +c z q(¯ |[ ]) ,LUR i
j

j j i LUR, 0 ,
2

(1)

where qj,i denotes the site characteristics and [βj] are the fitted para-
meters, which are normally-distributed, independent random variables.
Here, denotes the probability density and denotes the normal dis-
tribution ( µ( , )). The coefficient β0 is derived from the βj and the
mean of the data and so is not an independent variable. Equation (1) is
a typical LUR formulation as implied in many studies (e.g.Hoek et al.,
2008).

We developed a new model for explaining the hourly mean

concentration, whose expected value for any particular hour, l, and any
particular site, i, c̄i, is conditional upon the original LUR-modelled
concentration for that site c̄LUR i, , the measured set of hourly mean va-
lues from the sensors for that hour, [yk], and the original LUR model
applied at the instrument sites, c[¯LUR k, ]. We assume a linear relationship
between the measured, hourly-averaged sensor data, [yk,l] for any given
hour of any given day, l, and the original LUR model:

= +y a c eˆ ¯k l l LUR k l, 1, , (2)

where, provided the sensors and the diffusion tubes have the same
calibration slope with respect to the true NO2 concentrations, any offset
error between sensors and diffusion tubes is zero-mean with normally
distributed errors. If the model is fitted by linear least squares regres-
sion, then el are normally-distributed zero-mean, random errors and the
slope, â l1, , is a normally distributed random variable. Then we assume
that this model applies at all other sites, i. That is, the model for the
hourly-averaged concentration at site i for any given hour of any given
day, l, is:

= +c a c¯ ˆ ¯i l l LUR i i l, 1, , , (3)

where the estimates â l1, are derived by least-squares fitting of equation
(2). The actual distribution of the error term (indication of the model
performance), εi,l would reflect site-specific effects that are not captured
by the original LUR model, and can be determined at the instrument
sites, k.

3. Materials and methods

3.1. Location

Auckland is New Zealand's biggest and fastest growing city and is
characterised by high traffic volumes with a large proportion of diesel
vehicles (Statistics New Zealand, 2013). Road traffic is therefore the
largest source of air pollution in Auckland, accounting for almost 80%
of the NOx (NO2 and NO) emissions (Xie et al., 2014). However,
Auckland's coastal geographic location facilitates relatively high wind
speeds, preventing a large build-up of air pollutants (Senaratne and
Shooter, 2004). The focus of this pilot study was on a ∼2 km long road
section around 4 km south of Auckland's city centre (Fig. 1). This sec-
tion of road (Dominion Road) was chosen as it not only has high vehicle
traffic (average daily weekday traffic: 25,901 vehicles) (Auckland
Transport, 2017) but is also a busy area for pedestrians using the shops,
bars and cafés along the road. Dominion Road is also well-used by buses
and commuters to Auckland's airport and its central business district
(CBD). We deployed eight instruments at different sides of the road,
spaced between ∼100m and 1 km apart, and at different distances
from intersections (Fig. 1a). In addition, in a previous study carried out
from November 2016–February 2017, we measured NO2 concentrations
at 40 sites, representative of the typical land use characteristics along
the road section, using Palmes diffusion tubes (Weissert et al., 2018)
(Fig. 1b). These measurements were used to develop a microscale LUR
model for the study area, which is described in detail in Weissert et al.
(2018). The presence of awnings and the number of bus stops within a
100m buffer had the highest proportional contribution (79% and 17%,
respectively) to the modelled NO2 concentrations, with street width and
distance to major road playing a minor role. The final model explained
66% of the variability in NO2 concentrations (RMSE: 3.3 μgm−3)
(Weissert et al., 2018). We also had a reference site in Auckland's CBD,
3 km north of Dominion Road (Fig. 1c). The study was undertaken over
30 days during summer when mean temperatures ranged between 14 °C
and 24 °C (NIWA, 2017), and the wind was from the SW with speed
predominantly in the range 0–2m s−1 (detailed data in the Supporting
Information, SI).
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3.2. Low-cost instruments

The term ‘low-cost sensor’ is often used to refer to the assembly of
the detection element, measurement electronics, air-inlet, air-sampling
and communications systems, and housing and mounting that together
deliver the measurement result; ‘low-cost’ refers to such sensors whose
installed capital cost is less than about 2% of that of a regulatory-

standard reference instrument. The term ‘sensor’ can also be taken to
mean just the detection element and its specifically associated elec-
tronics and calibration. Here, we use it in that way since the whole
measurement package (the ‘instrument’) contains several such sensors.
The deployed ‘low-cost’ instruments were the AQY from Aeroqual Ltd,
Auckland, New Zealand. An independent validation of these instru-
ments, for both ozone and NO2 has also been reported (South Coast

Fig. 1. a) Map of instrument locations, b) location of the diffusion tubes deployed in the previous study and c) map of the instrument locations in relation to
Auckland's Central Business District (CBD) and the location of the reference site at the edge of the CBD.
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AQMD, 2018). Since the accuracy and precision are critical to the as-
sessment of the model developed in this paper, we give a detailed as-
sessment here. Nitrogen dioxide in the ‘low-cost’ devices was measured
using an electrochemical sensor (Membrapore type O3/M5;
output∼ 2 nA/(μg m−3) that was exposed directly to the atmosphere
hence sampling by diffusion. The ‘low-cost’ instruments also in-
corporated an ozone sensor that uses a gas-sensitive semiconducting
(GSS) oxide, WO3, as the detection element (Aliwell et al., 2001;
Hansford et al., 2005; Utembe et al., 2006; Williams et al., 2002). Air
was drawn through the ozone sensor by a fan, through PTFE tubing and
stainless steel filters. The ozone sensor has been extensively validated in
both laboratory and field studies (Air Quality Sensor Performance
Evaluation Center, 2018; Bart et al., 2014; Deville Cavellin et al., 2016;
Lin et al., 2017; Miskell et al., 2018a; Williams et al., 2013). The major
cause of drift in these, which occurs over the long term, is particulate
deposition in the inlet and on the sensor causing ozone decomposition
or diminution in the air flow. The two sensors were mounted side-by-
side, protruding from the base of the polycarbonate case and protected
by a shield from accidental impacts (photographs in the SI). Sensor
signals were sampled every 1-min, digitised using a 16-bit A-D con-
verter, and transmitted using a cell-phone modem to a remote database.
Key features of the device include solar shields to regulate heat, and a
sophisticated inlet configuration for the ozone sensor (inert dust filters;
anti-static and inert materials).

3.2.1. NO2 measurements: design principles
The NO2 concentrations averaged over a 2-week period, measured

using diffusion tubes in the previous study (Weissert et al., 2018),
varied from 4 to 30 μgm−3. Reliable measurement over such a low
concentration range, that is sufficiently accurate to discriminate effects
between sites, is very challenging using low-cost sensors (Baron and
Saffell, 2017; Cordero et al., 2018; Cross et al., 2017; Feinberg et al.,
2018; Lewis et al., 2016; Munir et al., 2019; Popoola et al., 2018) and
requires careful consideration of the sensor performance. The electro-
chemical NO2 sensor is a conceptually simple but physically complex
device (Baron and Saffell, 2017). A current is measured in an electro-
chemical cell. Conceptually, the electrode potential at a sensing elec-
trode is set such that the reaction rate at the sensing electrode is con-
strained to a maximum value by the rate of diffusion of the gas through
a membrane that covers the electrode. Thus, the current for the reaction
of gases at low concentration in air is proportional to the product of gas
concentration and diffusion coefficient through the membrane. How-
ever, the signal is the sum of an offset current and currents due to the
reaction of different gases at the electrodes, and is dependent on elec-
trocatalytic activity of the electrode materials towards the different
gases that might be present. The electrode is a porous structure through
which gases diffuse to the electrode-electrolyte interface. The reaction
current depends on wetted area, gas diffusion through the porous
electrode structure, and temperature. Oscillations in water vapour
pressure, temperature and water vapour transport can cause oscillations
in the meniscus where the liquid electrolyte, electrode and gas meet,
hence alterations in wetted area. Sudden changes in humidity indeed
cause significant, rapid current transients in these electrochemical gas
sensors (Pang et al., 2017, 2018) as we have also observed. The offset
current, and the electrode reaction kinetics, can also change with time,
since the reactive electrode catalyst materials change slowly with time.
These effects can be significant for measurement at typical urban at-
mosphere concentrations, where the reaction current is typically 2% or
less of the offset current for the commercial devices that we used.

Ozone and nitrogen dioxide are both electroreduced at a diffusion-
limited rate at the operating potential of the sensor. Thus, the mea-
surement model for the sensor can be written:

=i i k C k Cmeas NO O0 1 22 3 (4)

=C b b i b CNO meas O0 1 22 3 (5)

Where imeas and i0 are the measured and the offset current, respec-
tively and the parameters b0= i0/k1, b1= 1/k1 and b2= k2/k1 have to
be determined by calibration. A simple correction can be made if an
independent measure of the ozone concentration is available. In the
literature, this has been done using a remote reference analyser (Mead
et al., 2013) or a model for ozone concentration (Popoola et al., 2018),
or another electrochemical sensor (e.g. Cordero et al., 2018; Munir
et al., 2019). On the microscale, with traffic-dominated emissions,
variability is expected to be large both in time and space, so we rejected
a remote or model-based approach. Correction using an electrochemical
sensor for ozone relies on constructing sensors for which k1 and k2 are
sufficiently different; however, since NO2 and O3 have virtually the
same diffusion coefficient in air, because they have almost the same
molecular weight, k1≈ k2. A disadvantage of that method is that a total
of 6 different parameters must be determined, and these have to remain
stable, and be confirmed to be stable, over the life of the sensor. In
addition, the electrochemical ozone sensor has the sensitivity to tem-
perature and humidity fluctuations that are found for the nitrogen di-
oxide sensor, making the compensation difficult (Cordero et al., 2018).
An alternative is to incorporate an ozone decomposition catalyst on the
NO2 sensor (Hossain et al., 2016). A disadvantage of this is reliance on
the unknown efficiency of the ozone catalyst, which must remain high,
and be confirmed to remain high, over the life of the sensor. We have
adopted an alternative approach, which is to use a semiconducting
oxide-based sensor for ozone. As noted above, this sensor has been
extensively validated in long-term measurements in the atmosphere,
and is negligibly sensitive to humidity changes, to nitrogen oxides at
atmosphere concentrations, and to temperature variations (Bart et al.,
2014).

3.2.2. NO2 measurements: errors and validation
Drift or errors in the NO2 measurement could arise because:

a) The actual value of the offset i0 could alter from the value stored in
the instrument and used in the calculation: background currents in
the electrochemical cell are temperature and wetted area (hence
relative humidity and interfacial tension) – dependent. Uncalibrated
interferences could also cause additional currents and hence an al-
teration in i0. A specific issue is the response to rapid humidity
changes noted above.

b) The actual value of k1 could alter from the value stored in the in-
strument and used in the calculation: clogging of pores in the
membrane by dirt deposited in the sensor, or by poisoning or ageing
of the electrode.

c) The actual value of b1 can change from the value stored in the in-
strument and used in the calculation: decomposition of ozone inside
the sensor housing, inlet filter or on the membrane as a consequence
of dirt deposition.

d) The instrument-measured value of CO3 can drift from the true value:
drift in the ozone sensor.

Of particular significance is signal noise that is specifically related to
exposure in the atmosphere, previously noted and attributed to atmo-
sphere composition fluctuations (Baron and Saffell, 2017; Mead et al.,
2013) (Fig. 2a). The fluctuations were of relatively high frequency
(Fig. 2b). The amplitude distribution of the sampled signal overall could
be represented as the sum of two normal distributions, varied with
time, and could roughly be classified into ‘noisy’ and ‘quiet’ periods, not
correlated with a diurnal cycle (Fig. 2c). The standard deviation of the
sampled signal did not correlate with the mean signal. This noise was
not present under laboratory conditions of constant humidity (Fig. 2d).
The noise was also removed if the sensor in the atmosphere was covered
with a cap (Fig. 2e), or was mounted at the end of a sufficiently long
tube, open to the atmosphere at the end remote to the sensor, and could
be altered by altering the size of the hole in the cap covering the sensor.
Therefore, these fluctuations were not due to the electronics, or to rapid
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temperature fluctuations but were connected to exposure in the atmo-
sphere and particularly to the design of the sensor inlet and hence
probably to fluctuations around the sensor inlet that cause perturba-
tions in the meniscus at the fluid-electrode-gas interface. Such fluc-
tuations could perhaps be related to fluctuations in transport of water
between liquid and gas phases. A reliable measurement of (NO2 + O3)
could be obtained by averaging over a sufficient time. In the case of the
instruments used in the present study, we used the hourly average of
instantaneous measurements made once per minute. Subsequent in-
strument designs have used higher frequency sampling, but these were
not available for the present study. For the 60-point running mean, the
estimated standard deviation in the mean based on the noise amplitude
distribution and the sensitivity determined from calibration using the
running mean was between 1.7 and 4.3 μgm−3 NO2 (‘quiet’ and ‘noisy’
periods respectively) and from the 60-point running standard deviation
determined over several days was 2.5 μgm−3 NO2.

To verify the performance of the devices, first ten devices were co-
located for a period of 35 days with reference instruments for O3 and
NO2 (O3: Thermo Scientific Model 49i, NO2: Thermo Scientific Model
42i) at a site close to a motorway junction, approximately 3 km distant
from the study area (Fig. 1). The performance of the O3 sensor is cri-
tical, since errors propagate directly through to the NO2 estimation. For
hourly-averaged data, individual devices showed excellent correlation
between the O3 sensors and the reference analyser (Adj. R2= 0.99)
with no drift during the entire co-location period. The O3 sensors also
agreed well among each other, with an Adj. R2 of 0.98. The major effect
on the accuracy of the NO2 readings was the noise. The results were

however satisfactory with sufficient averaging: we chose 1 h as the
time-scale for consistency with practise reporting results from reference
stations. As noted above, the standard deviation in the 60-point mean of
the raw signal from the NO2 sensor was equivalent to 2.5 μgm−3 NO2.
We determined the measurement model coefficients (equation (5))
using the final 10 days of hourly-averaged data from the co-location,
before deployment (‘calibration period’) and evaluated the accuracy
and precision relative to the reference instruments using the previous
23 days of data (‘test period’). The calibration period was chosen to be
immediately prior to deployment to minimise the risk of drift during the
deployment period. The test period was of similar length to the site
deployment. For the aggregate of all ten NO2 instruments the root mean
square error (RMSE) from the 1:1 line was 5.5 μgm−3 (Fig. 3). For
individual NO2 instruments, the RMSE evaluated against the reference
analyser ranged from 4.1 to 5.1 μgm−3 during the test period.

To illustrate the stability over time of the results, Fig. 4 shows the
hourly-average midday NO2 and O3 concentration at the reference site
for each of the ten sensors, compared with the reference analyser during
the test period.

After the co-location at the reference site eight of the ten devices
were then mounted at different sites across the study area. The in-
struments were mounted at approximately 3m height in front of shops
and businesses where an external power supply was available. Site
photographs are given in the SI. One site (site H) was powered with
solar panels and two were battery powered during daytime due to the
mains supply being limited by timers. In addition, we measured wind
direction and wind speed at site E using a sonic anemometer

Fig. 2. a) Raw electrochemical sensor signal, sampled at 0.15 Hz, illustrating the offset and noise and the effect of signal averaging by a running mean. The cycle of
daylight hours is superimposed. b) Expansion of time scale of a segment of the record, to illustrate the high-frequency noise. c) Amplitude distribution of the noise,
modelled by a sum of two Gaussians, with standard deviation 8.7mV (equivalent to 13 μgm−3 NO2) and 21mV (equivalent to 33 μgm−3 NO2). d) Signal noise at
high time resolution in ambient air in a laboratory chamber: signal standard deviation 0.67mV, equivalent to 1 μgm−3 NO2. e) Effect of placing a cap over the sensor,
outside in the atmosphere (inset: segment of the time series with cap on at high time resolution: signal standard deviation 1.4mV, equivalent to 2.2 μgm−3 NO2.).
The instrument output voltage sensitivity to current variations through the sensor is 1.4 mV/nA.
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(WindSonic, Gill Instruments Ltd.) that was installed on a lamp post 5m
above the sidewalk (wind data are shown in the SI).

The main concern relating to the data for the deployment period
was to demonstrate the stability of the devices over time, and to de-
monstrate that the observed site-specific effects were significant re-
lative to the errors of measurement. To evaluate the stability of the
ozone sensors we used the mean-variance (MV) proxy matching pro-
cedure described in previous work (Miskell et al., 2016, 2018a). There
were just two reference instruments available (at locations that were
not in similar land use to the study site) – the motorway junction site

and a suburban site approximately 7 km distant, operated by Auckland
City Council. We calculated apparent slope and offset using 3-day
running mean and variance, as described previously (Miskell et al.,
2018a) and did not note any significant drift.

Fig. 4 shows that, at the reference site before the deployment,
midday NO2 did not show any significant long-term trend. Therefore, as
a further check to assess the stability of the NO2 results during the
deployment, we simply checked for any long-term trend in the hourly-
average values at midday for each site. Fig. 5 shows the results for the
eight deployment sites. Any trend was at most 5 μgm−3 across the
whole deployment period.

4. Results

4.1. Spatial and temporal variability of NO2 concentrations

Results from the low-cost instruments showed very strong gradients
in NO2 concentration in both time, and space, over short distances, of
the order of 100m. Mean diurnal NO2 concentrations are illustrated in
Fig. 6a, and the variability is further illustrated by the diurnal variation
of the standard deviation of measurements over 1 h (Fig. 6b). In gen-
eral, NO2 concentrations were low, ranging from around 5 μgm−3 at
night-time to a maximum between 25 and 30 μgm−3 during the
morning rush hour on weekdays, close to heavily-trafficked intersec-
tions and bus stops (sites A, C and G: Fig. 6). In contrast, other sites,
even relatively close by, showed maximum concentrations below
20 μgm−3 throughout the day. The evening peak was less distinct
(Fig. 6). On weekends, NO2 concentrations remained below 20 μgm−3

throughout the day with no distinct morning peak (Fig. 6). Ozone fol-
lowed an opposite diurnal cycle to NO2 with a maximum at site E and a
minimum at sites A, C and G (see SI), consistent with titration of marine
background O3 against vehicle-emitted NO (Weissert et al., 2017).

Fig. 3. Scatter plot showing the relationship between reference data and the
sensor-calculated NO2 during the test period. Dotted is the 1:1 line; solid is the
regression line.

Fig. 4. Mean hourly-averaged midday NO2 and O3 concentrations (error bars: standard deviation) for each of the ten instruments at the reference site compared with
the reference analyser for the test period.
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4.2. Time-dependent LUR model

Fig. 7 gives example correlations according to equation (2) of the
hourly-averaged sensor measurements with the microscale LUR model,
applied at the eight sites. It indicates that, while the static linear model

is reasonable (Adj. R2= 0.70–0.96 for the example shown in Fig. 7)
there are some significant site-specific, time-dependent deviations.

Fig. 8 shows the hourly-averaged sensor data plotted against the
hourly-averaged modelled NO2 concentrations, c̄i l, (equation (3)), for
each site over the entire deployment period. The model in general

Fig. 5. Long-term trend for each site (instrument) of measured hourly-averaged midday NO2 concentration during the deployment period illustrating small drift
during the study period.

Fig. 6. Comparison of the diurnal variability across sites of the a) mean and b) standard deviation of NO2 concentrations between weekday and weekends.

Fig. 7. Linear regression of hourly-averaged sensor results
from one day against the static LUR model applied at the
eight instrument sites. The black solid line is the slope from
equation (2) and the black dashed lines are± 1 standard
error of the slope. The dotted red line is the 1:1 line. The
panels are different hours of the day. (For interpretation of
the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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captured the time- and space-variation in NO2.
Fig. 9 shows the difference between the modelled and measured

concentrations, εl,k (equation (3)), coded by site, for the whole period of
the study, plotted against the hourly-averaged modelled data and also
shows the distribution of the difference at each site. Fig. 9 indicates that
there is no concentration-dependent bias. Fig. 10 shows the mean
diurnal difference averaged over the entire deployment period, be-
tween hourly-averaged measured and modelled NO2 concentrations,
evaluated for each site. These variations are small, but the errors are
also correspondingly reduced by the averaging over 30 days: estimated
standard deviation ∼1 μgm−3. Figs. 9 and 10 show that there are site-
and time-specific effects that are not captured by the model and that are
not well-correlated with the modelled concentrations.

5. Discussion

Despite the low pollutant concentrations, the low-cost instruments
successfully captured significant differences between the different sites.
The model, fusing the low-cost sensor observations with the microscale
LUR model, captured the time and space variation reasonably well. The
distribution of the difference between the modelled and measured NO2

concentrations shown in Figure 10 shows small offsets for different
instruments, that are within the error estimates developed in the
‘methods’ section. Superimposed on these offsets, a clear diurnal var-
iation can be seen at some sites and not at others, of the difference
between measurement and model, averaged over the whole deployment
(Fig. 10). Although the number of sites in the study was small, a ten-
tative assessment of the site- and time-specific effects could be made,
relating the observations to specific urban design features. Table 1
shows the dominant parameters for the LUR model at each instrument
site, and also notes the side of the road, the presence of traffic lights and
the direction with respect to the dominant direction of traffic, which
determines whether traffic is stationary during the rush hour or accel-
erating on the instrument side of the road. The highest concentrations,
which also had a notable diurnal variation, were observed at a site
under an awning directly next to a bus stop, (site A and C, respectively).
Sites close to bus stops but not close to traffic lights (D, E, F) did not
show a significant diurnal variation. Site H was unusual, showing a
diurnal variation with the lowest concentrations during the day.

LUR modelling studies undertaken at the local (Miskell et al., 2015)
and microscale (Weissert et al., 2018) in Auckland have identified the
proximity and number of bus stops as key predictors for NO2

Fig. 8. Hourly averaged NO2 concentrations measured at the eight sites against the modelled NO2 concentrations (c̄i l, , equation (3)). The dashed line is the 1:1 line.

Fig. 9. Variation of the difference between modelled and measured hourly-average NO2 concentrations (εl,k, equation (3)) with the modelled hourly-averaged
concentration for the eight instrument sites, and the distribution of this difference at the different sites.
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concentrations. The importance of bus stops within a short distance
within the LUR model emphasises the significance of diesel buses as the
major source of NOx emissions. A sizable share of NOx emissions from
diesel vehicles is associated with uphill driving, acceleration on a ramp,
or positive accelerations from a standstill (Franco et al., 2014; Gis,
2017). For turbocharged diesel engines, NO emissions increase strongly
with relative positive acceleration, defined as the integral of the pro-
duct of instantaneous speed and instantaneous positive acceleration
over a defined section of a driving schedule, and are also correlated
with gear changes during the acceleration (Giakoumis and
Triantafillou, 2018; Giakoumis and Zachiotis, 2018). The occurrence of
events such as these would vary across the day, and would depend on
traffic lights, the dominant direction of traffic with respect to the lights,
traffic density and the interaction of traffic lights with one another
(reflected in the average transit time). A diurnal variation might thus be
expected, associated with traffic lights. Sites D, E, F were some distance
from traffic lights, which could account for the lack of diurnal variation
of the difference between measurement and model at these sites. Site A,
which recorded the highest concentrations, is upstream from a traffic
light and on the west side of the road, where morning traffic is higher,
and under an awning. It is directly by a bus stop. Further, it is on a
slight hill, where traffic is accelerating away from the traffic light, and
exit from the bus stop is impeded by parked cars. Buses at site A arrive
around every 5min throughout the day, likely explaining the con-
tinuously high NO2 concentrations at this site. Whilst there is no bus
stop very close to site C, this site is upstream from a traffic light, just
after where a bus-only near-side lane terminates at a lane for cars

turning left at the traffic light (driving is on the left in New Zealand).
Buses, which pass this site around every 5min throughout the day, are
thus stopped near the site by the traffic waiting to turn (see SI for site
photos). Whilst measured concentrations at Site H were low, this site
was unusual in showing a diurnal variation with overestimated con-
centrations during the morning and underestimated concentrations in
the evening. There are a number of fast-food outlets near this site,
which are busiest at night, which may explain the observed variation.
Although the offsets for the different instruments were within the error
estimates for the model, some tentative deductions can be made in
relation to the results from sites E, F and G. Site F was not directly next
to a bus stop but it was located between the entry and exit of a large car
park hence where vehicles would be accelerating, possibly explaining
the higher NO2 concentrations measured by the instruments compared
to the model. Similar to site A, site G was directly downstream from a
traffic light, likely explaining the higher measured NO2 concentrations.
Site E was close to a bus stop and under an awning, where higher NO2

concentrations would be expected, yet measured NO2 concentrations
were low. However, there is a potential effect of the siting: the instru-
ment was against the wall directly under the awning, where air circu-
lation may be limited. Previous studies have shown that pollutant
concentrations can be significantly lower at the building side than the
kerbside (Moodley et al., 2011) and that concentrations decrease with
increasing height (Vardoulakis et al., 2011), both effects possibly ex-
plaining the lower NO2 concentrations recorded by the instrument. The
diffusion tubes, which were used to develop the LUR model, on the
other hand were directly on the kerbside and at a lower height (2m).

While NO2 concentrations in Auckland are relatively low compared
to other cities, our results indicate that the largest contribution of high
NO2 concentrations is likely related to buses, which are almost ex-
clusively diesel operated in Auckland, and start-stop traffic at traffic
lights. Considering that regular commuters wait at bus stops twice a
day, five times per week, which accumulates to around 60min per
week, and wait at intersections to cross the road, this can contribute
considerably to an individual's exposure (Velasco and Tan, 2016).

6. Conclusion

We have presented a novel approach to combine a network of low-
cost air quality instruments with microscale LUR models to interpolate
and map NO2 concentrations at 50m spatial scale and hourly time-
scale. With attention to detail, specifically to the electrochemical NO2

sensor noise, and to reliable correction for the ozone interference, low-
cost NO2 instruments give data that are sufficiently accurate to capture

Fig. 10. The mean diurnal variability of εl,k at the instrument sites, k. The colours show where the model over- or underestimated NO2 concentrations.

Table 1
Dominant parameters for the LUR model (bold parameters were significant in
the LUR model development) and additional parameters that seem to be re-
levant at the instrument locations. Values are the characteristics of each of these
parameters at each instrument site.

Site Awning Nr. of bus
stops
within
100m

Traffic
light
within
100m

Distance to
bus stop
(m)

Side of
Street

Dominant
direction to
traffic light

A Y 3 Y 3 W Downstream
B N 3 Y 30 E Upstream
C Y 4 Y 70 W Upstream
D Y 2 N 18 W -
E Y 2 N 10 E -
F N 2 N 15 E -
G Y 3 Y 61 W Downstream
H Y 1 N 37 W -
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the important spatio-temporal variations of concentration of this pol-
lutant in an urban environment, even if the concentrations are low. The
study has also shown how analysis of differences between the measured
and modelled concentrations can reveal specific urban design features
that are not necessarily well-captured by simple linear LUR models but
which might contribute disproportionately to population exposure.
Further research is needed to assess site and time specific effects across
different seasons and weather conditions. However, to date long-term
NO2 data from dense low-cost instrument networks are rare largely due
to sensor drift and the lack of efficient calibration procedures.

The ability to map air pollutants across a grid for any given day and
hour at a high spatial resolution offers new opportunities for exposure
assessments that take account of people moving through micro-
environments at different times of the day/week/year. For example, it
allows comparing the air pollution exposure along different routes to a
supermarket, school or restaurant at different hours of the day, different
days of the week or month. The method could be used as a tool to
identify pollution hot spots at different times of the day, which could
help urban planning.

This study has indicated the importance of site-specific interaction
effects between land use variables, that are not well handled by simple
spatial linear models. Models which incorporate both space- and time-
dependent variables, and which can be constructed through a mea-
surement programme using simple hand-held sensors (Miskell et al.,
2018b) offer a possible way forward. Another approach may be the use
of geographically weighted regression models, that account for non-
stationary spatial effects (Song et al., 2019). Limitations are also im-
posed by siting requirement for the low-cost instruments, chiefly access
to power. Specifically, there is the need to ensure that the sampled air is
representative of the main land use. If the network is large enough, the
LUR model may be built directly using the output from the low-cost air
quality instruments. This may also allow investigation of space- and
time-dependent effects and model adjustments in more detail.
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