
Solution to the Problem of Calibration of Low-Cost Air Quality
Measurement Sensors in Networks
Georgia Miskell,†,‡ Jennifer A. Salmond,‡ and David E. Williams*,†,§

†School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
‡School of Environment, University of Auckland, Auckland 1010, New Zealand
§MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand

*S Supporting Information

ABSTRACT: We provide a simple, remote, continuous
calibration technique suitable for application in a hierarchical
network featuring a few well-maintained, high-quality instru-
ments (“proxies”) and a larger number of low-cost devices.
The ideas are grounded in a clear definition of the purpose of a
low-cost network, defined here as providing reliable
information on air quality at small spatiotemporal scales. The
technique assumes linearity of the sensor signal. It derives
running slope and offset estimates by matching mean and
standard deviations of the sensor data to values derived from
proxies over the same time. The idea is extremely simple:
choose an appropriate proxy and an averaging-time that is
sufficiently long to remove the influence of short-term
fluctuations but sufficiently short that it preserves the regular diurnal variations. The use of running statistical measures
rather than cross-correlation of sites means that the method is robust against periods of missing data. Ideas are first developed
using simulated data and then demonstrated using field data, at hourly and 1 min time-scales, from a real network of low-cost
semiconductor-based sensors. Despite the almost naiv̈e simplicity of the method, it was robust for both drift detection and
calibration correction applications. We discuss the use of generally available geographic and environmental data as well as
microscale land-use regression as means to enhance the proxy estimates and to generalize the ideas to other pollutants with high
spatial variability, such as nitrogen dioxide and particulates. These improvements can also be used to minimize the required
number of proxy sites.
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Recently, interest has developed in supplementing the use
of sparse networks of precision regulatory instruments in

air quality management with measurement using high density
networks of lower cost instruments which aim to provide
reliable information to citizens at local-scales.1−5 Field studies
have previously illustrated the potential of such high-density
networks to reveal pollutant patterns not evident in the more
sparsely distributed regulatory networks.6−13 In part, the
change is being driven by the falling costs of computation
and communication. A weak link is instrumentation and
sensors, but in recent years these have also significantly
advanced.12,14−19 As a consequence, calibration costs and data
verification tools are areas that now demand attention in order
properly to exploit the potential of low-cost air quality sensor
networks.3,5,14,20−23 Currently, air quality instruments require
frequent, rigorous calibration to provide reliable data meeting
regulatory-standards. Calibration is a significant operational
cost, which may be as important as instrument cost in limiting
the number of instruments practically achievable in a dense
network deployment.6,24,25

“Factory calibration” is used here to describe the calibration
by the manufacturer to align sensor signals to the variable of
interest. Factory calibration can often be inappropriate for
environmental monitoring because varying meteorological and
other important controls (such as the influence of other
pollutants) are not accounted for by such calibration.6,8,23 Thus,
a second field or in situ calibration outside of factory settings is
usually required before the sensor can provide meaningful
environmental results.7,13,18 This is referred to here as “field
calibration”. Regular calibration is required to ensure ongoing
accuracy, especially when using sensors that are prone to drift.26

A popular field calibration technique for low cost sensors is
periodic colocation of the instrument with a regulatory standard
instrument. This technique is appealing because of its simplicity
and accuracy. Yet, it has some disadvantages. These include
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periods of missing data where the sensor has been removed for
calibration, low network scalability due to intensive labor
requirements to regularly move sensors for colocation, and an
inability to adapt or correct for in situ changes over time such
as calibration drift. To overcome these issues remote calibration
techniques, where the sensor is corrected without colocation,
have been devised.27,28 One method is where the network data
are expressed as a sum of spatial frequencies, which are
oversampled; in other words, the spatial frequency of the
measurement locations is greater than the lowest spatial
frequency in the data so the data are cross-correlated between
the different measurement locations.29,30 Linearity of sensor
response is assumed. Essentially, this method adjusts slope and
offset of the individual devices to maximize cross-correlations
between network locations and has been referred to as “blind”
calibration: “blind” because this calibration method does not
rely on ground truth data to guide expectations, although
accurately known data from at least one location are required. A
“semiblind” calibration was also introduced, where some further
ground truth about the network was available.29,30 This method
is not however robust enough to deal with missing data and
correlated interferences between different atmospheric con-
stituents could be a significant issue. Another approach is to use
verified data to correct for extraneous influences.23,31−33

However, a practical limitation can be providing a sufficiently
large training set of sufficiently good data. Data fusion, which is
combining sensor measurements with model results, is an
emerging and promising calibration technique.34 However, the
stability of the sensor response is assumed.
In previous work, we developed a drift detection algorithm

that exploited network cross-correlations.21 The idea of a
“proxy” data set was introduced, and a starting point was a clear
specification of the low-cost network purpose. Proxies were
chosen based on land-use similarity. We also introduced a
method in other work wherein the signal is split into a regular
component (the general diurnal variations) and a fluctuating
local-scale component. Autoregression and multiple linear
regression with proxy sites, based on the fluctuating
component, were able to distinguish regional from local
influences and further identify drift.31 Both of these proposed
methods worked in real-time, averaging over a short (three-
day) time-scale, and were reasonably robust against periods of
missing data.
In the present paper, we extend this work and demonstrate a

simple method for continuous remote calibration of individual
devices. We exploit the idea of a hierarchical network, in which
a few well-calibrated instruments act as “proxies” to which other
low-cost devices are referred. We also exploit the fact that air
quality shows regular diurnal patterns and general correlations
with land-use. Figure 1 illustrates the proposed network

architecture, which features a “compliant” layer of regulatory-
standard instruments, a “managed” layer of low-cost instru-
ments which are subject to the automated procedures of
reliability checking previously described21 and which are
replaced as necessary, and the third layer of instruments,
which are designed to have a minimum cost, minimal
prechecking before installation and whose calibration is
updated using methods described here.
The spatial density will normally increase down through the

layers as costs become less for the lower layers. Mobile
instruments would provide a further level of checking if a
network was operating such a system.35 As before, a
precondition is defining a clear specification of the network
purpose. A second requirement is that the calibration method
should need minimal training data and be able to update
routinely in near real-time. The method is demonstrated here
using a dense network of devices, that are not precalibrated, on
both short-term (1 min) and hourly averaged ozone (O3) data.
Finally, we discuss the potential for land-use regression to
extend the methods for pollutants such as nitrogen dioxide
(NO2) and particulates, that may be more spatially variable
than O3, and to minimize the required number of reference
measurement sites. We discuss the important problem of cross-
interferences between pollutants in the sensor response.

■ THEORY
We define that the purpose of a high spatial density network is
to provide reliable information on the occurrence of high
concentrations at the local-scale with short time resolution
since total exposure is often determined as the result of
repeated exposure to episodic short-time-scale events. Here, the
time resolution and acceptable uncertainty in the reported
values will determine the spatial density of proxies. What
uncertainty thresholds are appropriate for local-scale low-cost
sensor data is a subtle question that requires a clear
understanding how the data might be used. This is a decision
problem, accounting for uncertainty in the light of decisions to
be made based on the data, that moves well beyond the scope
of the present work but which is nevertheless important in
setting the context.22 We do not address it directly but focus on
the reliability of reporting of occurrences above an arbitrary
threshold.

Assumptions. Sensor Data Are a Linear Transformation
of the True Data. If Xi(t) denotes the true data value at
location i and time t, then the sensor data, Yi(t) over a range of
expected measurements, will satisfy:

= +X t a a Y t( ) ( )i i0 1 (1)

We use the term “sensor data” to refer to the results delivered
by the low-cost device: that is, to the device comprising the air

Figure 1. Network architecture for a minimum maintenance, high spatial density air quality measurement network that exploits network cross-
correlations. The proxy distribution matching method for “semiblind” calibration is described in the present paper.
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sampling system, gas sensor, and associated electronics and
controls that delivers a signal according to eq 1. In practice, we
have found this to be a robust assumption, for devices
measuring NO2 and O3.

7,18,21,36 The validity in practice
depends on the configuration of the sensor and the device
that converts the sensor signal into the supplied measurement
result, and a proper understanding of the effect of interferences
from other atmospheric constituents. The O3 device used is
based on a semiconducting oxide where the output is linearized
based on a factory calibration that is loaded onto the device,
and which has been extensively validated in measurements both
in the laboratory and the urban atmosphere.7,18 Previous results
have shown sensors to retain a linear response even though
they may drift.7,27

Frequency Distribution of Site and Proxy Data Have
Similar Functional Form over a Suitable Time Period. By this
statement we mean, for example, that both distributions should
be log-normal with some limitations, that are to be explored, on
the range of mean and variance. Alternatively, the distributions
could be similar around the mean but differ in the tail. Below,
we explore empirically this statement. Slope and offset
estimates can then be derived simply by matching mean and
variance from eq 1, where the proxy distribution, Z, is taken as
an estimate for the true data distribution, X.
If Zi(t − td:t) denotes the proxy data and Yi(t − td:t) denotes

the sensor device data for site i over the time interval (t − td:t)
then we define the slope, ̂a1 and offset, ̂a0, estimates for the
corrected data. That is, for the estimate of Xi at time t, X̂i,t:

α =
⟨ − ⟩
⟨ − ⟩

̂
Z t t t
Y t t t

var ( : )
var ( : )1

d

d (2)

α = ⟨ − ⟩ − ̂ ⟨ − ⟩̂ E Z t t t a E Y t t t( : ) ( : )0 d 1 d (3)

where E< > denotes the arithmetic mean evaluated over the
time period (t − td:t) and var< > denotes the arithmetic
variance about the mean. Then:

̂ = ̂ + ̂X a a Yi t i t, 0 1 , (4)

Equations 2−4 can be contrasted with results from linear
regression. Least squares linear regression takes the data as
pairs, assumed correlated, with the result:

− ⟨ ⟩
⟨ ⟩

= − ⟨ ⟩
⟨ ⟩

Z E Z
Z

r
Y E Y

Yvar var
Z Y,

(5)

where rZ,Y denotes the pairwise correlation coefficient. In our
method, we do not assume pairwise correlation but match the
probability distributions, which is equivalent to setting rZ,Y = 1
in eq 5. We will show that land-use correlation can be used to

estimate rZ,Y and hence refine the estimates ̂a1 and ̂a0. The idea
of matching distribution parameters averaged over time
distinguishes our method from those that use correlations of
the data.
We explored, using simulated data, by how much ̂a1 and ̂a0

estimates change when the proxy distribution differs from the
true data distribution. Log-normal distributions37 were used
since this distribution, in general, gives a reasonable
representation of air quality data.38,39 Results are given in the
Supporting Information (SI) illustrating that, even if the proxy
distribution is significantly different from the true data
distribution, estimates that satisfy criteria for indicative air
quality data are obtained.
According to eqs 2−4, E⟨X̂ (t − td:t)⟩ = E⟨Z (t − td:t)⟩ and

var⟨X̂(t − td:t)⟩ = var⟨Z (t − td:t)⟩. Thus, if the distributions are
characterized by only two parameters, then the site distribution
over sample time td is constrained to be the same as the proxy
distribution. Thus, there is a question of whether the corrected
data deliver any useful information over and above that
delivered by the proxy. The prior time period, td, imposes an
averaging filter on the data. It is empirically chosen to obtain a
reasonable estimate of the distributions of Z and Y but is also
chosen to average the short-term fluctuations and emphasize
the longer-term, regular component of the concentration
variation within the distribution of values. In the framework
of our previous study in which we decomposed the variation
into regular and fluctuating parts,31 here we are tending to
match the diurnal component of the site and proxy in order to
estimate the slope and offset of the examined sensor device. We
show later that, with a suitable choice of td, the distribution of
X, including the marginal distribution of exceedances of a
threshold, is reliably estimated.
An alternative method to consider to decouple the estimate

of the marginal distribution of X from the marginal distribution
of the proxy, Z, is the use of data truncation. This is where the
mean and standard deviation estimates are derived from a
subset of the data, e.g. where the data above (“right
truncation”) or below (“left truncation”) a threshold are
removed. So, for example, the distributions of Z and Y could be
matched only for values below the arithmetic mean. The use of
data truncation to improve estimates using simulated data is
demonstrated in the SI.

■ METHODS
Data. Data were from a subset of nine sensors of a network of low-

cost semiconducting oxide-based devices measuring ambient ground-
level O3 around the Lower Fraser Valley (LFV), British Columbia,
Canada, including the city of Vancouver, in 2012.7 The selected subset
of sensors was colocated with regulatory analyzers: thus, the true data,

Table 1. List of Sites and Proxies, with Their Land-Use Classification and the Status of the Sensor at the End of the
Deployment, Independently Determined9

site sensor status land-use (<1 km) selected proxy selected proxy land-use (<1 km) selected proxy distance (km)

Abbotsford intact residential Langley residential 19.7
Langley drift residential Maple Ridge residential 13.3
Maple Ridge drift residential Langley residential 13.3
North Delta drift residential Langley residential 25.3
Pitt Meadows drift rural Chilliwack residential 56.7
Port Moody drift residential Second Narrows commercial 12.6
Richmond intact residential Langley residential 39.7
Second Narrows drift urban Burnaby Kensington Park residential 4.4
Surrey intact residential Langley residential 10.1
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X, were available for comparison with the estimate from the sensor
data, X̂. The station locations, together with the mean and standard
deviation of O3 concentration over the study period, are shown in the
SI. A continuous six-week run of data was available. Measurements
were made every minute. Analyzer station mean values over the study
period ranged from 12−24 ppb and the standard deviation about the
mean was between 9−14 ppb. Analysis was done using R (version
3.3.3), with plots made using packages “ggplot2”40 and “ggmap”.41

Proxy Selection and Adjustment. For the central band of the
latitude of the LFV, which is the location for the present
demonstration, a very simple assignment of proxies by broad-brush
land-use classification proved effective. In the SI, we provide a more
detailed discussion of proxy selection.
As in previous work,21 sites were grouped into three broad land-use

categories within 1 km scale: urban (commercial and industrial),
residential (residential and park), and rural (rural and agricultural).
Table 1 lists the sensor colocation sites and their chosen proxy site.
Most colocated sites were in residential land-uses, and so selecting a

suitable proxy with similar land-use was straightforward. There were
three sensors in colocated locations that were somewhat difficult to
find suitable independent proxies having similar land-uses within 1 km
as described in ref 42. For these three sites, we used proxies from
analyzer stations that had the most similar land-use based on satellite
imagery. These three measurement locations (Pitt Meadows, Port
Moody, and Second Narrows) were checked for any calibration
correction issues that may be linked back to this weakness in the proxy
selection.
For sites within the same land-use category, we took rZY = 1 (eq 5).

If sites in a different land-use category were to be used as proxies, we
estimated slope correction factors (rZY in eq 5) in the following way
(SI: S5). First, we regressed the hourly O3 concentrations between
regulatory stations in the different land-use categories, fixing the
intercept at zero. The median value of the regression slope between
stations in two different land-use categories was taken as the slope
correction factor for comparison of data from a site in one of the land-
use categories with a proxy in the other land-use category. The full
data set of regression slopes is given in the SI (S5). Table 2 gives the
derived slope corrections.

Choice of Averaging-Time, td. Figure 2 shows the pairwise data
correlation between two reference stations in the “residential” land-use
category for different running averaging-times, td. The data were
collected at 1 min sampling frequency and any data pairs for which one
or both values were missing were ignored. The correlation of both
running mean and running standard deviation improves as td increases.
We used a running averaging-time td = 72 h. This value was chosen
because it was sufficiently long both to smooth the effects of short-
term fluctuations and to yield values of ̂a1, and ̂a0 that remained
reasonably constant with an increase of td, but sufficiently short that it
retained the diurnal variation and kept the initialization time to a
minimum.
Evaluated using a running td = 72 h sample, both the mean and

standard deviation are essentially identical: rZY = 1. Thus, the diurnal
and regional variation dominates the signal at this time-scale. However,
using a running 10 min time-scale illustrates the effect of local
variations dominating the signal. Cross-correlations of hourly data for
each LFV regulatory station measuring O3 are in the SI.
Evaluation. For hourly measurements, we evaluated the mean

absolute error (MAE) of the corrected O3 sensor signal from the actual

concentration measured by the analyzer with which it was colocated.
For both hourly and 1 min measurements, we compared the number
of exceedances of a threshold concentration recorded by the corrected
sensor signal with the number recorded by the analyzer. We arbitrarily
chose a threshold that defined the top 5% of all regulatory station
readings. For hourly data, this was for concentrations above 41.9 ppb;
and for 1 min data, this was 46.2 ppb. We made a simple count of the
fraction of the recorded exceedances that were “false negatives” (FN) -
the corrected sensor signal was below the threshold while the analyzer
signal was above, and which were “false positives” (FP), the sensor
signal was above the threshold while the analyzer signal was below.

■ RESULTS

The hourly raw data from the analyzers and their colocated
sensors is given in the SI (S5).
Figure 3 shows the correlation between sensor and analyzer

for the first and last week of the 6-week deployment. Some
devices had calibration faults from the start of monitoring, some
showed a calibration change and drift part-way through
deployment, and some remained stable for the entire examined
period. Despite the drifts and mis-calibration, all colocated
sensors remained linearly responsive to O3, which is a
requirement of our method. Similar behavior has been reported
by others.27 Failure modes for the devices have been discussed
extensively.18 A major cause of the drift was particle deposition
within the sensor, linked to forest fires in Siberia and to a large
fireworks display.7 Previous work has shown how to detect
these drifts and miscalibrations.4,7,21,43,44 Colocation (“field
calibration”) gives the true values of a1 and a0, eq 1, which we
evaluated using the first week and the last week of hourly data
for all nine devices. Then, with the selected proxy, ̂a1 and ̂a0
were calculated for the same time periods (“semiblind
calibration”). Figure 4 compares the two sets of values. The
semiblind calibration according to eqs 2−4 gave excellent
results, even for very large drifts. In the SI, we give weekly
scatterplots for all the sensors, corrected according to the
methods of eqs 2−4 further illustrating the excellent agreement
obtained. Even in the cases where proxies were in different
land-use, results were acceptable provided data accuracy
expectations were relatively low.
Figure 5 shows the week-by-week performance of the

method in the case of a sensor that was impacted by the
mid-July fires, and also had an initial factory calibration that was
in error. The agreement between the corrected sensor and the
analyzer is excellent (Figure 5A). The semiblind method was
successful in calibrating and routinely updating correct
coefficient values for a poor sensor without any initial
colocation requirement, despite the corrections being large.
The proxy comparison also clearly showed that the factory
calibration was in error.
Table 3 summarizes results using the MAE between the

sensor signal and the colocated analyzer.
Devices that drifted showed MAE scores that were larger in

the final week. The semiblind calibration method significantly
improved these scores. Results were satisfactory without using
any refinement with a more detailed application of land-use
regression to improve the mean and variance estimates (see
later discussion) with some MAE scores impressive.
The efficacy of using slope correction factors (Table 2) to

allow the use of proxies in different land-use classifications was
assessed. We used both a heavily urban (Robson Square) and
rural mountain location (Hope Airport) as examples. Figure 6
shows the MAE scores for all the sensor sites using these two

Table 2. Slope correction factors for proxy data when
compared to locations in different land-uses

proxy land-use

sensor land-use urban residential rural # locations

urban 1 0.76 0.68 3
residential 1.23 1 0.87 11
rural 1.28 1.03 1 3
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proxies. The simple slope correction factors improved the
accuracy of the predictions.
In the Theory section, we noted that, if the distributions are

characterized by only two parameters, then the site distribution
over td is constrained to be the same as the proxy distribution.
Thus, there is a question of whether the corrected data deliver
any useful information over and above that delivered by the
proxy. Particularly, there is the question whether the frequency
of exceedances of a threshold is constrained to be the same as
the proxy. Two ideas were offered: first was that the use of a
sufficiently long averaging-time, td, meant that short time-scale
fluctuations of the site and proxy data were decoupled; and

second was that data truncation could be used to match site and
proxy only over a part of the range. One colocated site was
selected as an example from the network where the sensor O3

signal significantly drifted and the colocated regulatory station
observed periods of particularly high concentration (Langley:
Figure 5), and the method was applied to 1 min time resolution
data. The semiblind calibration coefficients used results from
the hourly data using td = 72 h. The corrected sensor results
followed the colocated regulatory data well, not the proxy
(Figure 7). Thus, using another site as a proxy in the semiblind
correction method did not mask those short-time-scale site-

Figure 2. Illustration of the effect of a running average on the correlation of ozone concentrations from two different stations in the Lower Fraser
Valley, with measurements made at 1 min time resolution. (A) td = 10 min mean ozone; (B) 1 h mean ozone; (C) 72 h mean ozone; (D) 72 h
standard deviation ozone. The dotted line is the 1:1 fit.

Figure 3. Scatterplots with 1:1 line of the first (dark) and last (light) week of colocated measurements. Data is hourly factory-calibrated sensor data.
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specific details that are important in providing information
beyond that given by the proxy.

A scatterplot of the high 1 min concentrations from Langley
shows that both the left truncation and the complete data set

Figure 4. First (red) and last (blue) calibration coefficients for all colocated sites using td = 72 h: semiblind calibration values ̂a1 (slope) and ̂a0
(intercept) against field calibration values a1 and a0. Line is 1:1 fit.

Figure 5. (A) Scatterplot of analyzer and semiblind corrected sensor hourly data (earlier weeks = lighter colors and later weeks = darker colors). (B)
Similar to (A) using raw sensor data. (C) Stepping intercept estimate, ̂a0, and (D) stepping slope estimate, ̂a1, with dashed lines the drift detection
thresholds used in ref 22.
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gave similar results. Right truncation gave values that were
consistently lower (Figure 8). One may deduce that the proxy
and sensor data were similar in distribution above the mean and
somewhat dissimilar below the mean. This is consistent with
direct observation of the raw data (SI: S5): the sensor signal
had become compressed over the concentration range and
particularly the minimum concentration reported (found at
night) had been elevated.
Figure 9 shows a simple time series of exceedances of the

threshold, for the corrected sensor signal using all data and left-
and right-truncations at the mean. Marked on the diagram are
where the colocated regulatory analyzer recorded exceedances.
It is clear that the corrected sensor data using all data or left-
truncation reliably recorded the exceedances, with a very small
number of false negatives of short duration. The false negatives
were removed by right-truncation but some exceedances were
missed. The best accuracy and reliability fit for reporting short-
term high concentrations when using the threshold of 46.2 ppb
were where all td recent data were used to derive calibration
coefficients. For these data, 86% of high regulatory concen-
trations were also recorded as high by the sensor, with 24% of

corrected sensor results signaling high values being false
negatives. Left truncation results also showed 86% of corrected
data were over the threshold when regulatory results were also
high. A higher false negative rate, 34%, was recorded, however.
The right truncation calibration result showed 82% of sensor
values correctly identifying high episodes, but 56% of reported
high reference values were sensor false negatives. Thus, the
scheme was successful in reliably calibrating sensors and on
reporting high concentration episodes at short time-scales.
Comparison of the reporting of exceedances using different
truncation schemes could be developed to provide an estimate
of uncertainty for the reporting. The reliability of reporting of
exceedances was less if hourly data were used (SI: S7). The
improvement in results in comparison to those found for
hourly data is simply because averaging tends to bias the
corrected data toward the proxy.

■ DISCUSSION
The method of deriving calibration coefficients by matching the
mean and standard deviation of the data to that of a proxy has
been shown to be a robust means of correcting data from
drifting or mis-calibrated low-cost O3 sensors. The idea is
extremely simple: to choose an appropriate proxy and running
averaging-time td that is sufficiently long to remove the
influence of short-term fluctuations but sufficiently short that
it preserves the regular diurnal variations. Proxy choice based
on land-use similarity has been demonstrated to be effective.
The use of a simple correction factor for relating a device to a
proxy in a different land-use was also shown to be effective. The
method gave a reliable running recalibration of devices that had
significantly drifted, and of devices that had initially been mis-
calibrated. Sensor data corrected using our method reliably
reported high concentration exceedances for both hourly and 1
min data. Use of data truncation in the proxy matching
identified where the proxy and sensor data distributions
differed, and could be developed into a method for blind
assessment of the reliability of the results.
There are a number of questions. First: how accurate do

estimates of the mean and the standard deviation need to be?

Table 3. MAE scores (ppb) for the Nine Colocated Sites,
Using All 6 Weeks of Data and the Final Week of Dataa

calibration

all data final week

site factory semiblind factory semiblind

Abbotsford 3.3 3.2 3.7 2.8
Langley 6.4 3 5.8 2.3
Maple Ridge 3.8 3.5 3.4 3
North Delta 4.8 5.6 5.5 5
Pitt Meadows 6.5 5.1 8.1 5
Port Moody 6 4.1 9.3 3.8
Richmond 5.9 4.2 7.5 3.2
Second Narrows 4.2 4.7 4.7 4.3
Surrey 3.1 3.5 2.6 2.8

aComparison of the raw sensor data with the semiblind calibrated
result; hourly data.

Figure 6. MAE scores between each colocated analyzer and semiblind corrected sensor hourly data using Robson Square (urban) and Hope Airport
(rural) as proxies. Black squares = unadjusted proxy data; red circles = slope correction coefficients applied. Those where only a red circle is present
are where proxy land-uses were the same.
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This question is a decision problem: namely how much
uncertainty is permitted for a specific data set or network in
relation to the way the data will be used. Under a network
where accuracy or precision requirements are relatively low, the
presented calibration method and recommended corrections
may be all that is necessary. Discussion on the purposes of low-
cost networks and the expectations for data accuracy is beyond
the context of work presented here, but is critical for future
development.22

Second: how limiting is the assumption of sensor linearity?
Sensor linearity from a number of studies is reported in a recent

electrochemical sensor review.14 Further, the linearity of the
sensor response need only cover the range of the expected
measurements. Semiconducting oxides generally show a
nonlinear response,45 but over the range of environmental
pollutant concentrations, the response is essentially linear18,46,20

and is in any case easily corrected with a simple factory
calibration. Hence, linearity of response over the required range
is unlikely to be an issue. However, the effect of cross-sensitivity
to other atmospheric species, which may be correlated with the
pollutant of interest, could be a serious limitation. Both
semiconducting oxides and electrochemical cells show sig-

Figure 7. Section of the 1 min data for a colocated site (Langley), comparing the regulatory analyzer and proxy data with the raw and proxy-
corrected sensor data.

Figure 8. Scatterplot of the 1 min data from Langley location using calibration coefficients derived from the hourly data results (td = 3 days). A
random sample of 1000 observations is used for plot clarity. Green triangles = full data set. Blue crosses = left truncation at the mean. Orange
diamonds = right truncation at the mean.
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nificant cross-sensitivity effects, including effects of variable
humidity and ambient temperature. The instrument needs to
be designed to cancel these. Thus, the semiconducting oxide-
based O3 instrument used in the present work uses a gas flow-
rate stepping method that cancels the effects of other
atmospheric constituents.18,47 The NO2 electrochemical cell
has, in practice in the atmosphere, a significant interference
only to O3 though effects of variation of ambient temperature
and humidity can be important. However, measurement of O3
using a semiconducting oxide instrument provides a very simple
and reliable correction.36

Third: the data that we have analyzed here was only for O3,
and so an argument may be made that these methods apply
exclusively to this pollutant, which, at least on a regional scale,
has a relatively smooth spatial variation. Would the semiblind
calibration technique translate onto other common urban air
pollutants, such as NO2 or particles, where the spatial variability
may be significantly greater? The key is to estimate from proxy
measurements the mean and standard deviation of concen-
trations over the averaging-time and the question is how to
make these estimates for a pollutant with significant small-scale
spatial variation without requiring an impractically large
number of reference-standard proxies.
Powerful methods are available for estimating the spatial

variation of the mean. Pollutant patterns are determined by
dispersion from sources, deposition on land and buildings, and
transport and reaction in the atmosphere, and a combination of
diffusion tube measurement, land-use regression, chemical
transport models and satellite data, has proved very effective in

the estimation of the spatial variation of mean values of the
major pollutants.48,49 These methods have been extended to
sub-km scale.50 Recently, we have demonstrated microscale
land-use regression for NO2, based both on diffusion tube
measurements44 and on measurements using hand-held
instruments,36 and have further developed these ideas to
include meteorological variables as well as urban design.36

These studies, which are straightforward to perform at a
neighborhood scale, provide a simple way of correcting a
proxy’s long-term mean value to account for local features as
well as provide an estimate about the uncertainty associated
with the correction. Furthermore, mobile devices can deliver
high spatial resolution information on long-term mean
concentrations.51 Both local51 and regional-scale52,53 spatial
patterns seem reasonably stable over time, further supporting
the idea of using a proxy for estimating the mean, with
appropriate correction factors.
Refining if necessary the estimate of the standard deviation of

the signal that is appropriate to the site is of particular
importance since the ratio of the standard deviations
determines the slope estimate in eq 2. There are simple,
empirical correlations that provide the means for this
refinement. Air pollutant concentrations rather generally show
a log-normal frequency distribution,39 for which it further
appears that the arithmetic standard deviation is proportional to
the mean. This result was noted some time ago for dust
concentrations.54 In the SI, we show data for O3. In recent work
using mobile measurement of particles and NO2 in a long-term
survey of a city, it was noted that the pollutant concentrations

Figure 9. One minute high concentration data as a binary signal for Langley location using the three different calibration results (all data or a
truncation). Colored lines show the corrected sensor results in reporting high concentrations (>46.2 ppb), where 1 = where a high value has been
found, and 0 otherwise. Black points at 1 are false negatives, where a high observation is recorded by the colocated analyzer but not the corrected
sensor. Red triangles at 0 are false positives, where a high observation is recorded by the corrected sensor but not the colocated analyzer. The inset
shows a close-up where errors may be due to the two instruments recording different air samples causing slight lags.
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were log-normally distributed with the median well correlated
with the arithmetic mean (provided a few extreme local
“hotspots” were removed from the correlation).51 For a log-
normal distribution, the linear correlation of the median with
the arithmetic mean implies linear correlation of the arithmetic
standard deviation with the arithmetic mean. Thus, if there are
sufficient proxy sites to estimate the correlation of standard
deviation with mean, then correction factors for local variations
of standard deviation can be derived from a land-use regression
model for the local mean. In this way, one could take into
account local land-use features that have a significant impact,
such as traffic emissions and bus stops.36,44,55 The uncertainties
in these estimates should be straightforward to incorporate into
the method we have described, deriving uncertainties in the
slope and offset estimates independently and hence ultimately
in the concentration.

■ CONCLUSION
The proposed data correction method is a viable, simple,
remote, self-updating calibration technique for a hierarchical
network of low-cost air quality sensors where a network of
regulatory level instruments also operates. The proposed
hierarchical network has a number of regulatory instruments
that provide the top-level of proxy, and a denser network of
low-cost instruments that are managed using these proxies,
where their data are confirmed as reliable using the methods
that we have described previously, but where their data are not
corrected. This second level of the network provides a second
level of proxy for the final level, of high spatial density, that has
data corrected as we have described. The network of managed
and reference devices would provide the necessary data for the
correlation of mean and standard deviation. Such a network,
supplemented if necessary with mobile devices, could be
configured for an optimal trade-off between cost, maintenance
and coverage, though further work is required to determine the
minimal number of regulatory-standard instruments needed
and to explore methods for estimating uncertainties. Further
research may look to confirm the methods in other networks,
for different pollutants, with different land-use and geographical
patterns and with different network configuration.
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