
Event Driven Software
Apache Kafka basics

Presenter
Timot Tarjani
Software Architect

1. Events

2. Architectures

3. Apache Kafka

4. Code in Java

Agenda

Real world events

Events in computing context

● An event, in a computing context, is an action or occurrence that can be identified by a program and has
significance for system hardware or software.

● Events can be user-generated, such as keystrokes and mouse clicks, or system-generated, such as program
loading, running out of memory and errors, or information collected by sensors.

● In conclusion an event is any state change that indicates that something has happened

Producer & Consumer

● Producer - Actors who producing and publishing
events

● Consumer - Actors who subscribing to events they
are interested in

Producer & Consumer services

App 1
(producer)

App 2
(consumer)

service 1 needs to know about
service 2 to be able to notify

Monolithic architecture

UI

Business Logic

Data Access Layer

DB

Strengths Weaknesses

● less cross-cutting concerns

● easier debugging and testing

● simple deploy process

● simple to develop

● understanding

● making changes

● scalability

● new technologies

Microservice architecture?

Microservice

Microservice

Microservice

Microservice

DB

DB

DB

Microservice

U
I

A
PI G

atew
ay &

 Service R
egistry

Event driven

Service 1 Service 2Event

Service 3 Service 4

immutable

Event driven architecture

● The event driven architecture (EDA) based on the detection, publishing, transmitting of events

and receiving, processing and reacting to them

● Events triggering the listening services

○ two types: events and commands

● EDA is mostly based on message driven architecture (MDA)

○ Publish, Subscribe

○ Message Queue systems

● Complex event processing - message flows, data pipelines

● Events are immutable

● EDA and MDA fits well into Microservice architecture

DB

DB

EDA + MDA + Microservice

Microservice

U
I

Microservice

Microservice

Microservice

BROKER

A
PI G

atew
ay

M
icroservice

Apache Kafka Platform

Apache Kafka is a community distributed event streaming
platform capable of handling trillions of events a day. Initially
conceived as a messaging queue,

Kafka is based on an abstraction of a distributed commit log.

Since being created and open sourced by LinkedIn in 2011,
Kafka has quickly evolved from messaging queue to a
full-fledged event streaming platform.

Written in Java & Scala.

kafka.apache.org

Who uses?

What is Kafka for?

“All of your data is a stream of events”

Publish/Subscribe

Read and write stream of events
like a traditional messaging
system

Processing

Support scalable stream
processing applications that
react to events in real time

Store

Store streams of data safely in a
distributed, replicated
fault-tolerant cluster

Event streams - real time

Event stream processing (ESP) is the practice of taking action on a series of data points that originate from a system that
continuously creates data. The term “event” refers to each data point in the system, and “stream” refers to the ongoing delivery
of those events. A series of events can also be referred to as “streaming data” or “data streams.” Actions that are taken on
those events include aggregations (e.g., calculations such as sum, mean, standard deviation), analytics (e.g., predicting a
future event based on patterns in the data), transformations (e.g., changing a number into a date format), enrichment (e.g.,
combining the data point with other data sources to create more context and meaning), and ingestion (e.g., inserting the data
into a database).

Event stream processing is often viewed as complementary to batch processing. Batch processing is about
taking action on a large set of static data (“data at rest”), while event stream processing is about taking action on
a constant flow of data (“data in motion”). Event stream processing is necessary for situations where action
needs to be taken as soon as possible. This is why event stream processing environments are often described
as “real-time processing.”

https://hazelcast.com/glossary/micro-batch-processing/

Kafka Architecture

Kafka Cluster

Broker

Topic

Partitions

Partitions

Partitions

Broker

Topic

Partitions

Partitions

Partitions

Broker

Topic

Partitions

Partitions

Partitions

Producer

Consumer

Producer

Consumer

Producer

Consumer

Topic

Records are organized into topics. Producer
applications write data to topics and
consumer applications read from topics.

Kafka retains records in the log, making the
consumers responsible for tracking the
position in the log, known as the “offset”.
Typically, a consumer advances the offset in
a linear manner as messages are read.
However, the position is actually controlled by
the consumer, which can consume messages
in any order.

Kafka Cluster

Broker

Topic

Partitions

Partitions

Partitions

Broker

Topic

Partitions

Partitions

Partitions

Broker

Topic

Partitions

Partitions

Partitions

Producer

Consumer

Producer

Consumer

Producer

Consumer

Anatomy of a Topic

Record

● key
● value *

○ AVRO
○ JSON
○ Protobuf
○ XML
○ Plain text

● timestamp
● headers

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

reads

Consumer A
(offset=9)

Consumer B
(offset=11)

Producers

writes

Offset

● current
● committed

○ rebalancing

event log

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

writes

Partition 0

Partition 1

Partition 2

old new

partitions

Anatomy of a Topic

Consumer Lag (combined lag)

Consumer lag is simply the delta
between the consumer's last
committed offset and the
producer's end offset in the
log.

Partitioning:

● by key
● default: round-rubin

Retention

Time (default: 7 days)
This configuration controls the maximum time we will retain a log before we will discard old log segments to free up
space if we are using the "delete" retention policy. This represents an SLA on how soon consumers must read their
data. If set to -1, no time limit is applied.

Size
This configuration controls the maximum size a partition (which consists of log segments) can grow to before
we will discard old log segments to free up space if we are using the "delete" retention policy. By default there
is no size limit only a time limit. Since this limit is enforced at the partition level, multiply it by the number of
partitions to compute the topic retention in bytes.

cleanup policy: delete

Latency, performance, scaling

Publish time: Sending and
appending the record to the
leader replica

Commit time: Replicating the
record from leader to followers

Catch-up time: Catching up to
the record’s offset in the log

Fetch time: Fetching the
record from the broker

Hundreds of configuration

● fetch.batch.size
● fetch.min.bytes
● fetch.max.wait.ms
● …

Number of partitions

● partition keys

Horizontal scaling of

● Kafka
● producer service
● consumer service

Consumer groups

● group id

Consumer Groups

P
ro

du
ce

r

Broker

Topic

Partitions-4

Partitions-5

Partitions-6

Partition-3

Partition-1

Partition-2

Consumer Group

consumer-1

consumer-2

gr
ou

p-
id

-7
89

Cluster

A Kafka cluster consists of one or more
servers (Kafka brokers) running Kafka.
Producers are processes that push
records into Kafka topics within the
broker. A consumer pulls records off a
Kafka topic.

Replication means having multiple
copies of the data, spread across multiple
servers/brokers. This helps in maintaining
high availability in case one of the
brokers goes down and is unavailable to
serve the requests.

Kafka Cluster

Broker

Topic

Partitions

Partitions

Partitions

Broker

Topic

Partitions

Partitions

Partitions

Broker

Topic

Partitions

Partitions

Partitions

Producer

Consumer

Producer

Consumer

Producer

Consumer

Distributed system

Zookeeper and Leader + Follower

Kafka Replication is allowed at the partition level, copies of a
partition are maintained at multiple broker instances using the
partition’s Write-Ahead Log. Amongst all the replicas of a
partition, Kafka designates one of them as the “Leader”
partition and all other partitions are followers or “in-sync”
partitions.

The Leader is responsible for receiving as well as sending
data, for that partition. The total number of replicas including
the leader constitute the Replication factor. To maintain these
clusters and the topics/partitions within, Kafka has a
centralized service called the Zookeeper.

Kafka Connect

● A Kafka Connect is a framework for connecting Kafka with external system

○ databases

○ search indexes

○ file systems

● Kafka Connectors are ready-to-use components

● Source connector - Import data to topics

● Sink connector - Export data to external systems

● custom connectors can be developed

● built on Confluent platform

DB

DB

Kafka Connect

Microservice

U
I

REST API Source
Connector

Microservice

Microservice

A
PI G

atew
ay

M
icroservice

DB

JD
B

C
 Sink

C
onnector

● Docker

● Java - Spring Boot project setup

○ spring-kafka

● Classes, Beans, Services

● Consumer

○ Message filtering

Show me the code!

Want to learn more?

● Kafka Connect

● Spring kafka-streams library

● Integration Testing Kafka based services

● KSQL

● https://kafka.apache.org/quickstart

● https://github.com/ttimot24/webinar-kafka-demo

https://kafka.apache.org/quickstart
https://github.com/ttimot24/webinar-kafka-demo

Questions & Answers

