THE BATTERY SHOW

NORTH AMERICA

north america

Lithium-ion Battery Pack Charging Interfaces and Challenges

Kevin Mengarelli Sr. Systems Engineer at Inventus Power

Anvin Joe Manadan

Sr. Electrical Engineer at Inventus Power

Information Classification: General

#TBS21 #EVT21

Li-ion Market Trends

- Need for safe & portable power is increasing worldwide
- Lithium-ion (Li-ion) batteries are used in almost every market segment including medical, consumer electronics, military, automotive, etc.
- Over the last few years, motive applications that have traditionally been powered by lead-acid batteries are adopting Li-ion battery technology.

Why Li-ion?

- Users are starting to see the advantages in using Li-ion batteries over the traditional lead acid packs, such as:
 - Longer runtime
 - Maintenance free
 - Faster Charging
 - Better insight to battery's key parameters such as State of Charge (SOC), State of Health (SOH) etc.
- But, there are **charger considerations** that need to be made when making the switch from lead-acid to lithium-ion.

Battery Intelligence

Long Lifespan

Charger Types

Standalone charger (No communication) Intelligent chargers (Closed Loop Communication)

Li-ion battery packs exhibit (2) types of behaviors:
Lead Acid replacement (Power terminals live)
Smart Battery (Power terminals live <u>after activation</u>)

Image Source: Delta-Q Technologies

POWER

Common Li-ion Charging Concerns

- Charger Compatibility
- Unable to Charge Battery
- Charger Fails to Stop Charging
- Stackable Chargers & Charging Beyond Limits
- Communication Issues

Charging Compatibility

- Charging Lead Acid w/ Li-ion charging algorithms
 - Max charge voltage much higher for Li-ion batteries (48V vs 58V)
- Charging Li-ion w/ Lead Acid charging algorithms
 - Charger must perform Constant Current / Constant Voltage (CCCV) profile
 - Max charge voltage & current should align with battery chemistry & spec requirements
 - Charging to terminate according to taper current of the cell
 - Safety concerns could arise if the charge voltage and/or current exceeds cell spec
- Why special charging profiles / algorithms matter?
 - Algorithms are tapered according to the battery pack chemistry & overall design

Battery Unable to Charge

Issue: Battery pack fails to charge; charger looks for battery terminal voltage before it starts charging.

1: A smart battery turns off the terminal voltage and enters SLEEP mode when the user inactivates WAKE and 'Charge Enable'.

Solution: Charger needs to activate 'Charge Enable' to enable charge mode, which gets the terminals to be alive

2. When cell voltage is critically low, pack enters a power saving mode to prevent further cell discharge

Solution: In this mode, pack requires a charge voltage to bring it out for this mode and enable charging; Charger needs to account for this mode of the battery pack

Charger Fails to Stop Charging

Issue:

- The charger does not stop charging the battery according to the battery spec.
- This results in cell over voltage fault; which if not taken care by a BMS could end in a safety event.

Solution:

- Standalone Charger
 - Proper charge termination conditions need to be defined & programmed in the charger & battery pack algorithm
- Intelligent Charger
 - Upon successful completion of the handshaking, the pack controls the charger by sending max charge & voltage details
 - The pack terminates charging using commands via electronic communication standards (CANopen or J1939)

Intelligent Charging

Stackable Charging

Stackable charging is when multiple chargers are connected in parallel to charge battery packs.

Issue: If one pack enters charge protection, total current is supplied to the remaining packs, which could result in an **over current charge protection** in the remaining packs, eventually stopping charging.

Solution: Intelligent Charging

- Inventus Power's virtual battery feature identifies the number of packs connected. The data from all batteries is consolidated by the master pack.
- This communicates with the master charger from the charger system and adjusts the current accordingly.

Communication Errors – only in Intelligent Charging

Issue:

- Charger baud rate of charger is different from baud rate of battery pack
- Mismatch of communication protocols (CANopen / J1939) between charger & pack
- Message structure is different between the charger & battery pack

Solution:

- Charger allows adjusting of baud rates to match with that of the battery pack
- Firmware for intelligent charger needs to account for the right protocol to communicate with the battery pack
- Messaging structure within battery pack BMS is published in a specification for which the charger firmware accounts for

Conclusion

- Solutions for charging issues can be addressed by both the Battery Management System (BMS) & the Charger
- Inventus Power has partnered with many OE chargers to develop specific charge algorithms for both smart charging & standalone charging
 - Ease of Compatibility can reflash software in the field
 - Charging algorithms have been tested & verified with our U1LiFePRO & PROTRXion batteries in various markets
- We continue to venture into new partnerships with charger companies to ensure a smooth transition from traditional lead acid batteries to Li-ion batteries for our customers.

INVERTUS POWER

THANK YOU!

Kevin Mengarelli kevin.mengarelli@inventuspower.com www.inventuspower.com

Visit us at Booth 2312

Product Showcase Thursday 9/16, 12:00 pm

