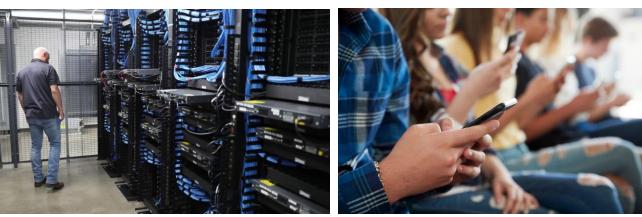
Seerene The Digital Boardroom


Analytics as "Navigation System" for Steering towards highest Excellence in Software Production

Conference: The Ideal Software Factory for Finance & Insurance October 15th, 2021 Hasso-Plattner-Institute, Potsdam

Dr. Johannes Bohnet Founder & Co-CEO Seerene GmbH Johannes.bohnet@seerene.com

Software is a Key Business-Driver for every Industry

Corporate IT of Banking, Insurance, Telco, Retail, $\dots \rightarrow$

Smart Hardware (IoT)

Core IT applications enable efficient business operations.

Customer-facing software creates new business opportunities.

→ <u>Tailor-made software</u> is the basis for competitive advantages
→ User-centricity requires <u>high-frequent delivery</u> → Agility/Speed

Multiple Strategies are necessary to Tackle the Challenges

- Replacing with "standard" solutions
- Minimum Maintenance
 - In-house or 3rd-party teams deliver releases with low pace

Core Backend Systems

- Agile Methodology
- MVPs & Prototypes •
- Long-term software product development with agile methodology
- Scaled agile organization

Customer-facing Software

Collaboration

- Startups as partners
- Integration into ecosystems

Core Backend Systems

Customer-facing Software

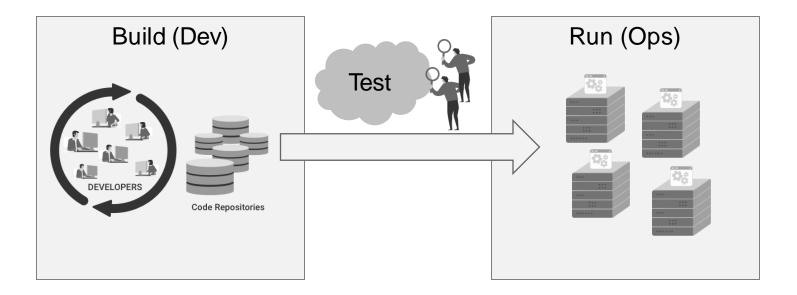


www.seerene.com

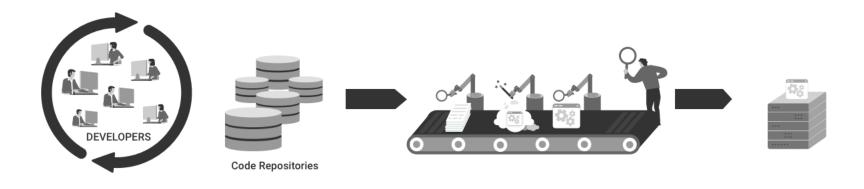
Tailor-Made Software is built in "Software Factories"

Mastering the process of software development is key

The ability to run software factories on highest level of excellence decides about business success.


A brief history of a typical **Journey towards Agile**

...and the typical problems that arise

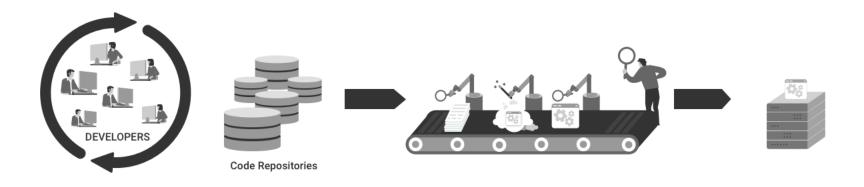

Tearing down the wall between "Build" and "Run"

Slow innovation cycles due to separated organizations

Dev + Ops = DevOps

Seamless process from coding, over testing to deploying production

Advantages:


• Faster innovation cycles

Technical prerequisites for DevOps approach:

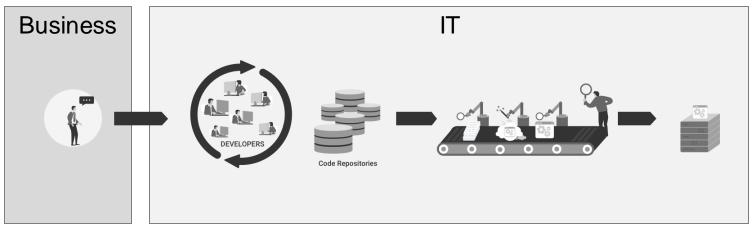
- Automated continuous integration & deployment processes (CI/CD)
- High degree of test automation
- · Flexible, virtualized hardware setups
- Decoupled (runtime) architecture

DevOps creates follow-up Challenges

Seamless process from coding, over testing to deploying production

DevOps approach requires:

- Automated continuous integration & deployment processes (CI/CD)
- High degree of test automation
- · Flexible, virtualized hardware setups
- Decoupled (runtime) architecture

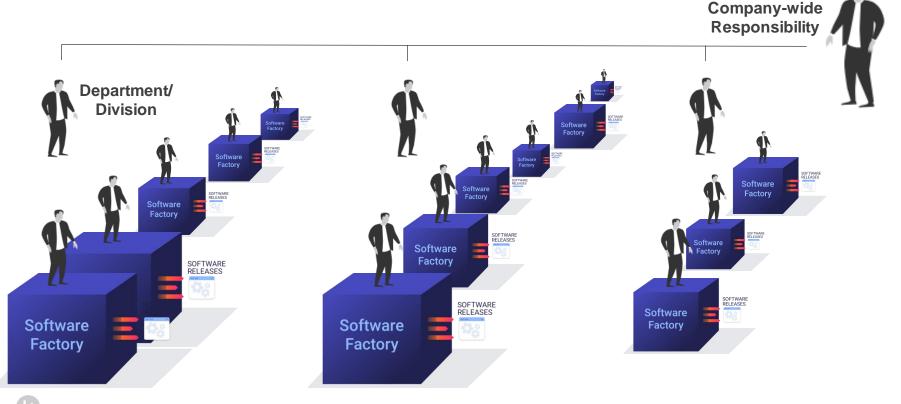

Major follow-up challenges:

- Cloud Infrastructures
- [Micro]Service Architectures (breaking monoliths)
- Heavy coding investment into automated tests

The next wall: Tearing down the wall between Business and IT

Agile methodology includes the business players into the equation: BizDevOps

Mind shift: From pre-planned projects to trust-based time-and-material journeys


Better: Business & IT are sitting in the same boat \rightarrow more trustful negotiations

Major challenge remains:

- How to prove the business that the new way of working is beneficial for the business?
 - Before: "know upfront what to get for the money". Now: "don't know what to get, don't know the costs".
- How to convince business to vote for technical housekeeping work instead of features?18.10.2021 | 10

Scaled Agile (on company level) is much more than Agile

The goal: Leading the entire IT organization towards highest excellence

Management prior to Agile Transformation: Culture of Control

"Big ship projects", planned and equipped in advanced before put to sea

Advantages:

(supposedly)

- Control over costs
- Clearly defined requirements / features
- Plan vs. actual comparison during the journey

Disadvantages:

The manifold reasons why your organization started the Π-transformation:

- Innovation cycles are too slow for your company's business in a fast-paced world.
- Planned requirements are oftentimes outdated when the software release is delivered.

...

Agile Methodology lacks the Birds-Eye Perspective

How to lead the entire "fleet" to highest excellence?

Agile methodology is team-focused:

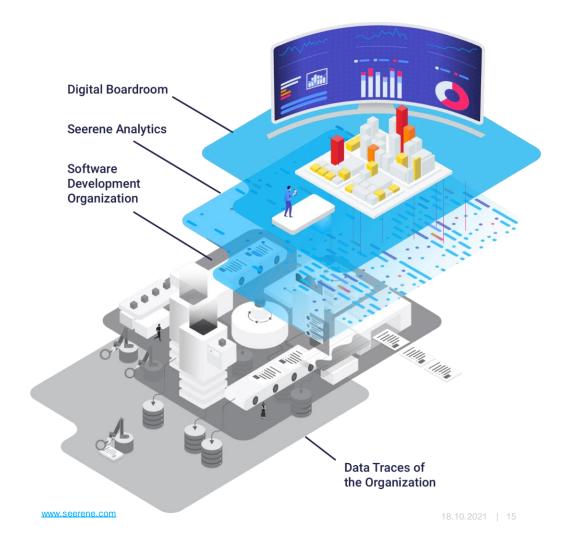
- Measurements for optimization are <u>only valid within each individual team</u> (e.g., story points, burn down rates, self assessments, ...)
- <u>Only loosely sharing</u> of knowledge and practices <u>across teams</u> via "guilds" or "communities of practice".
- Even large-scale agile approaches (e.g., SAFe) <u>steer the "fleet" only via</u> <u>the scope</u> (features) into the teams.

Major challenge:

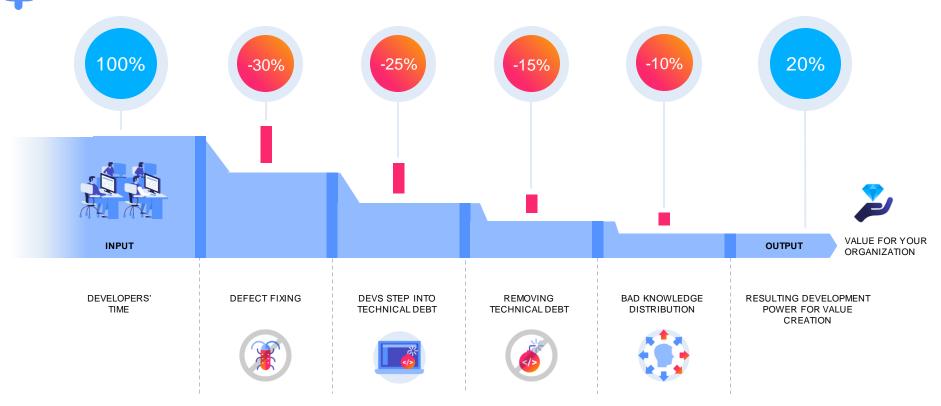
- How to <u>objectively measure</u> and compare across teams <u>without reducing</u> the teams' <u>empowerment and autonomy</u>?
- How to <u>prove</u> to the business that <u>agile</u> <u>is better than waterfall</u> methodology?

Full Transparency about the Software Production Process...

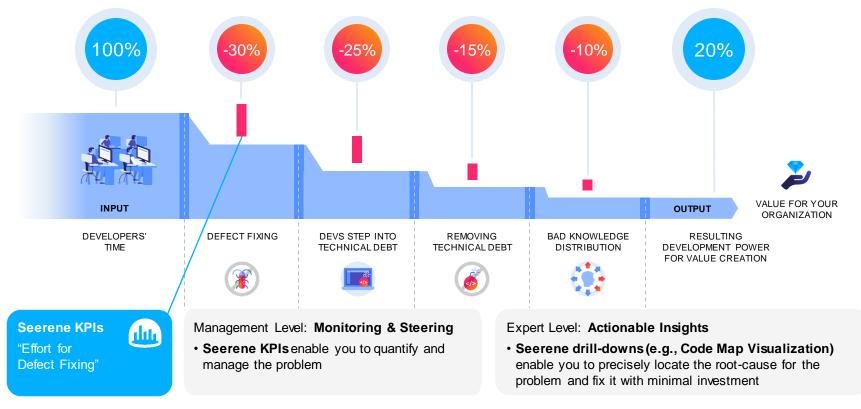
...across all software factories in the entire company



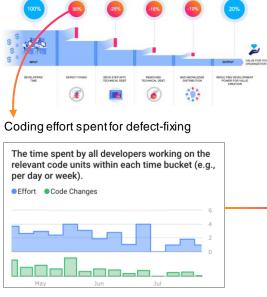
Establish a Digital Boardroom with Analytics


KPIs & drill-downs for balancing and optimizing the challenges of software development organizations

<u>dh</u>h



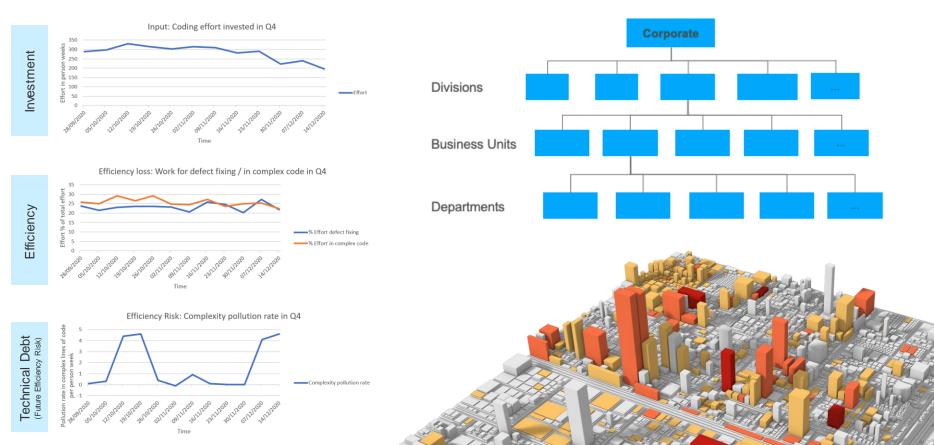
Quantifying Inefficiencies in the Software Production Process


DLocating and Eliminating Root-Causes of the Inefficiencies

...and create extra power - literally out of nothing

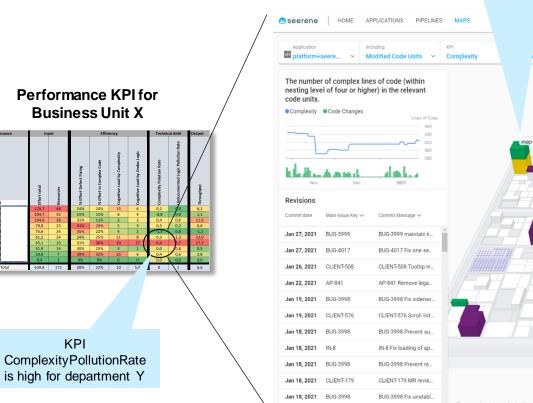
Actionable Insights for Gaining Extra Power

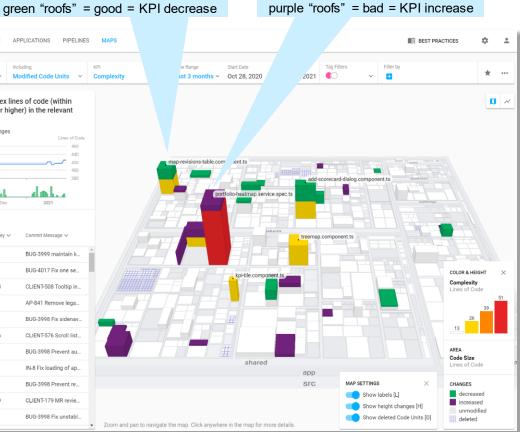
Example: Precisely identifying and fixing the code that frequently contains defects


- Reveal how much effort is spent for defect-fixing
- Locate code units that constantlyneed to be fixed
- \rightarrow Be able to effectively eliminate the problem

Transparency across all Software Factories in the Company

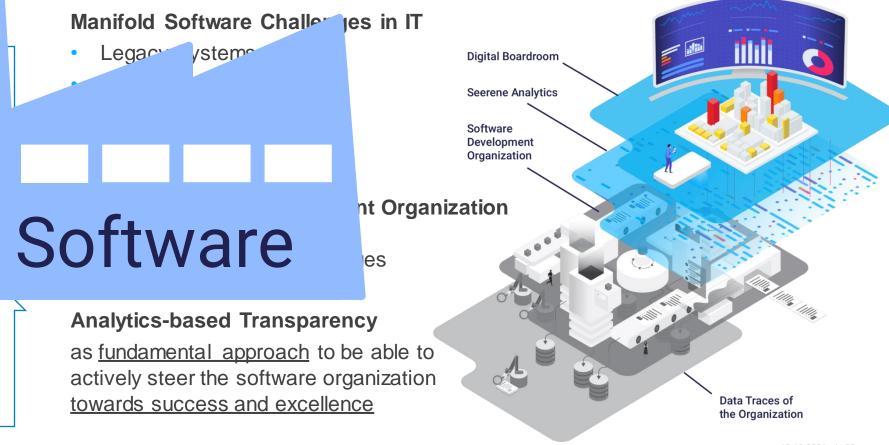
Inhouse vs. 3rd-party, programming languages and tech stacks, legacy vs. new, ...

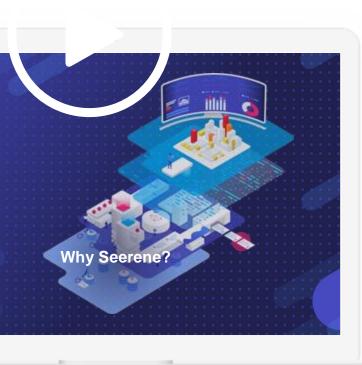

Breakdown of Performance KPIs According to Sub-Org-Structure


Where do we in code produ			re do the experienc uctivity lo	e		Where do the teams leave future problems behind?				There is new code being produced? delta logic statements ber developer w eek)
	Coding Invest			Effici	iency	Technical Deb			Output	
Div isions 👻	Effort total	Resources	% Effort Defect Fixing	% Effort in Complex Code	Cognitive Load by Complexity	Cognitive Load by Undoc Logic	Complexity Pollution Rate	Undoc Logic Pollution Rate	Throughput	Divisions
_	762,8	216	22%	34%	39,0	12,2	11	1	45,8	Components
1	639,8	172	28%	22%	9,8	5,8	0	1	6,6	
-	448,4	138	22%	33%	13,3	78,8	4	13	27,9	and the second second
-	297,2	127 213	20% 5%	20% 0%	9,7 0,2	0,8	2	0	6,3 0,9	
+	280,8 198,5	88	27%	34%	32,1	0,5 8,3	-3	0	2,3	
+	198,3	72	35%	38%	68,0	17,6	11	3	2,3 11,9	
+	175,5	56	32%	35%	42,5	10,0	0	0	2,4	
-	68,2	39	19%	11%	6,9	9,8	9	1	31,2	
†	40,0	36	37%	46%	50,7	4,6	0	0	2,0	
	11,3	9	29%	5%	1,2	2,0	4	1	20,3	
<u>du</u>										

Further Drill-Down into the Organization

	Governance	Input			Effic	iency		Technical debt		Output	
	Divisions BUs	Effort total	Resources	% Effort Defect Fixing	% Effort in Complex Code	Cognitive Load by Complexity	Cognitive Load by Undoc Logic	Complexity Polution Rate	Undocumented Logic Pollution Rate	Throughput	Divisions
'		125,7	48	24%	24%	15	6	0,2	0,0	6,1	Business Units
'		104,7	32	15%	15%	8	4	-0,8	0,0	1,1	
'		104,6	38	31%	11%	3	3	0,4	0,6	11,9	
<u>'</u>	-	79,8	23	41%	29%	5	3	0,5	0,2	6,6	Departments
,	-	75,6	24	35%	22%	4	2	-1,3	0,0	-1,1	
-	-	61,2 45,1	24 13	24% 31%	25% 36%	11 33	8 27	0,3 6,4	1,3 3,7	12,9 17,7	A TEPHENOLO
,	-	31,9	13	30%	25%	3	1	0,4	0,8	0,5	
,		10,8	7	39%	32%	25	6	0,0	0,6	2,8	
,		0,4	2	0%	0%	0	0	0,0	0,0	0,0	
	Total	639,8	172	28%	22%	10	5,8	0	1	6,6	


Drill-Down into Root Causes on Source Code Level



Total

Summary

Thank You!

Contact +49 331 7062340 ≤ johannes.bohnet@seerene.com

