Robustness optimization of welded structure to minimized mass and target fatigue life using RAMDO Petteri Kokkonen, Björn Hemming, Eeva Mikkola, Linus Teir, VTT Technical Research Centre of Finland Nick Gaul, RAMDO Solutions

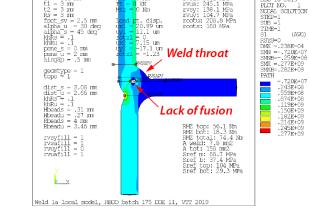
24/10/2021 VTT – beyond the obvious

Introduction

- Our motivation for robustness optimization is, that
 - decreasing mass of vehicles enables energy efficiency and decreasing CO2 emissions.
 - and the quality variation affecting fatigue strength can be considered in lightweight design.
- As the weight of the welded structure is minimized, the stress levels at the welds tend to increase, and the fatigue strength of welds becomes the bottleneck in design.
- In general, weld quality has significant effect on fatigue strength of welds.
- We used robustness optimization to
 - minimize the weight of a mock-up structure
 - and to meet the required reliability of 95% for fatigue life, while considering the variation in manufacturing quality.

The mock-up structure and the studied welds

- The welded connections of an industrial target structure are studied using a mock-up structure.
- Two mock-up structures were designed, one for manufacturing and another for structural optimization.
- Parametric FF-models were created for both the structure and the studied weld


eh = -.37 mm

ev = .44 mm t1 = 3 mm

t2 = 3 mm

Local model of weld 1a

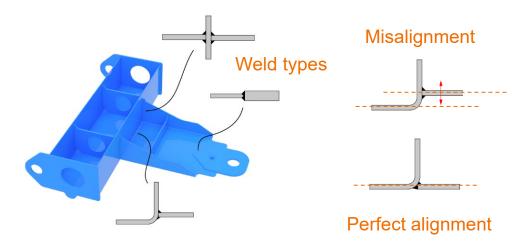
ANSYS Release 18.2

Build 18.2

DEC 10 2019

Max ENS stresses:

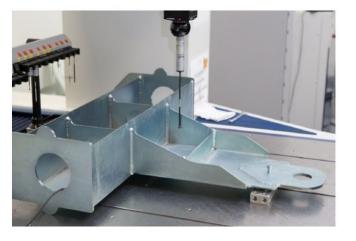
rvsa: 30.1 MPa rvua: 245.1 MPa rvsa:


Mock-up structure for measuring the manufacturing quality

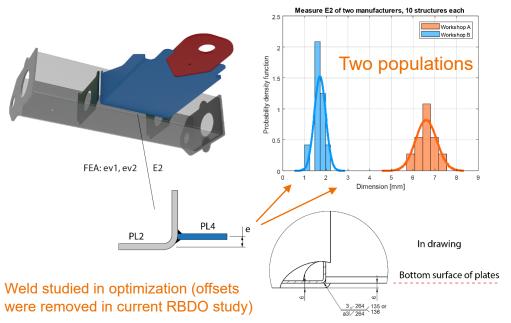
Thin plates, structural steel (S355) Plate at thicknesses 4, 6 and 8 mm. MAG welding, weld class C.

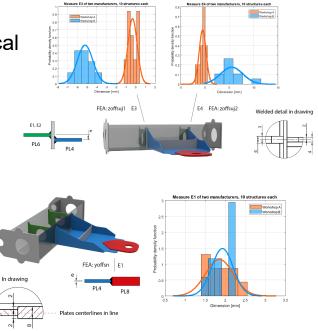
Welds

Manufacturing and measurements


- Two 10 piece series of mock-up structures were manufactured.
- By two manufacturers, at typical quality definitions for welding.
- Misalignments at welds were measured using coordinate measuring machine (CMM).

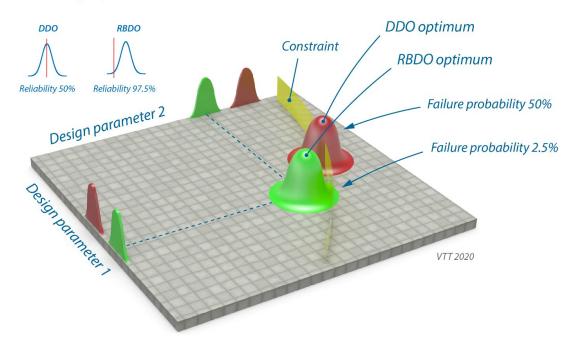
VTT – beyond the obvious


24/10/2021


Coordinate measuring machine (CMM)

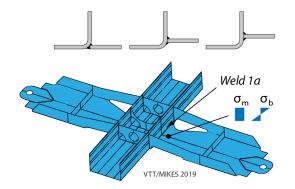
The measured misalignments at welds

- The measured misalignments are represented as statistical distributions as inputs for reliability based design optimization (RBDO).
- Two manufacturers show as two populations in the statistical distributions.

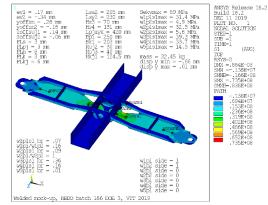


Other measured welds

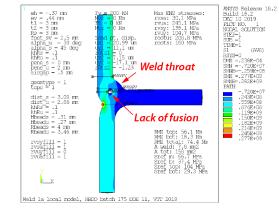
Reliability based design optimization (RBDO)


- 1st step Traditional optimization.
- 2nd step Continue with reliability based optimization
 - Find optimum that meets the target reliability, for example
 95% survival probability.
 - Surrogate modelling and Monte Carlo simulation are carried out using RAMDO software.

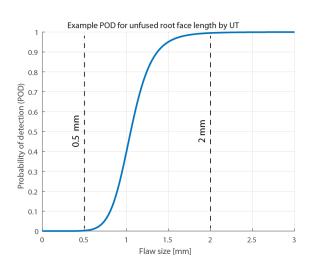
Run first the deterministic design optimization (DDO), and then continue with the Reliability based design optimization (RBDO) with Monte Carlo simulation to consider the variation.

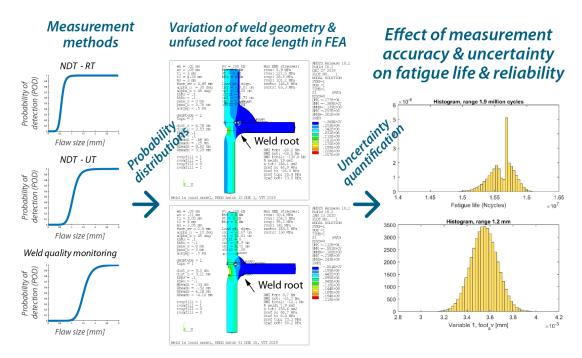


Optimization problem formulation


- Minimize mass
- Subject to constraints
 - Fatigue life ≥ 5 million cycles, and target reliability of 95%
 - Max stress ≤ limit value
 - Max displacement ≤ limit value
- At random parameters
 - Misalignments ± 0.5 mm ... ± 1.0 mm
 - Lack of weld penetration 0...1 mm
 - As POD-curve
- And random design variables
 - Main dimensions
 - Plate thicknesses
 - Weld throat thickness

Global model of welded structure mockup




Local model of weld 1a

Using Probability of Detection (POD) curves

- POD curves represent the uncertainty of NDT methods.
- Here applied to weld penetration.
- POD curve is used after differentiation as input in the RBDO workflow.

Compare different inspection methods

Robustness optimization workflow

- Statistical distributions as inputs to RBDO
 - Misalignments (CMM), weld penetration (POD-curve), and dimensional tolerances.

Weld is local model, REDO batch 175 DOE

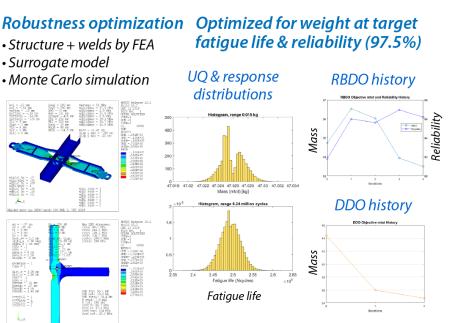
- RAMDO running FEA macros via MATLAB.
- Two level FE-models for the structure and the weld.

Measured

distributions

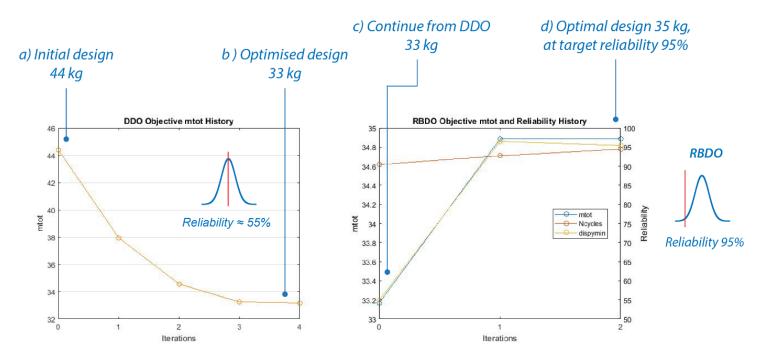
Dimensional variation

- Dimension measurements
- Misaligments at welds
- Root face length by POD


Detection uncertainty

Flaw size [mm]

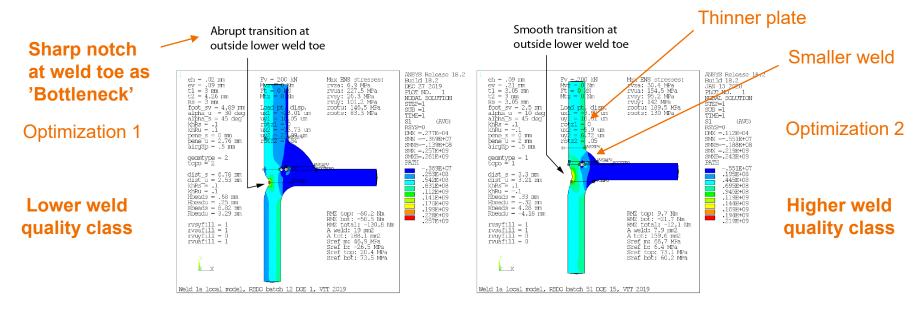
Probability of detection (POD)


24/10/2021

VTT/MIKES 2019

Optimization history

- Mass of initial design 44 kg is reduced to 33 kg after DDO, at reliability of 55%.
- Then after RBDO the optimum with mass of 35 kg and 95% reliability is found.



24/10/2021 Deterministic design optimization (DDO)

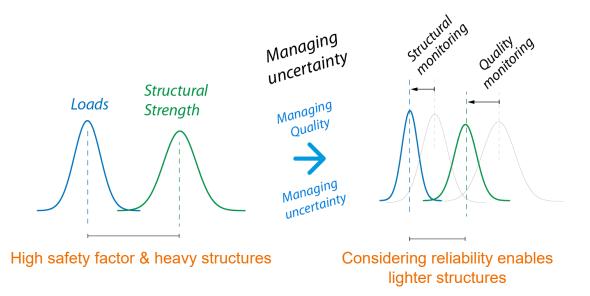
Reliability based design optimization (RBDO)

Effect of weld quality levels in optimization

- Weld quality level affects the possible weight reduction of the structure.
- Limiting the constraint of transition angle to smooth values in optimization leads to a lighter structure.
- In engineering practice this would be equivalent to increasing the weld quality class.
- The optimization results agree with the engineering experience.

24/10/2021

Smaller mass at optimum


Summary

- Weld quality criteria can be linked to fatigue life in reliability based design optimization.
- The two level FE-modelling allows for efficient optimization of welded structures.
- About 25% decrease in mass was achieved with the example structure, and the required reliability of 95% was met for the fatigue life, while considering the measured variation in manufacturing quality.
- As user experience, the learning curve with RAMDO was short.
 - The connection between RAMDO, MATLAB and the FEA-software was easy to implement.
 - RAMDO can be easily connected to any software that can be scripted and started from command line.

Future thoughts

24/10/2021

- The 1) increasing amount of available measured data, 2) modern software and 3) efficient computers enable use of reliability based approaches in engineering design.
 - The Big Data and monitoring trends increase the available information of loads, material defects, and manufacturing quality variation.
 - The increasing amount of available measured data improves reliability of case specific load distribution and structural strength distribution.
- The future plan is to apply robust design methods to actual industrial structures.

Thank You!

Contact at VTT: Petteri Kokkonen, petteri.kokkonen@vtt.fi

Contact at RAMDO Solutions: Nick Gaul, nicholas-gaul@ramdosolutions.com

VTT Technical Research Centre of Finland Ltd.