Optimization via RAMDO considering Uncertainties for Marine Applications

Hyun-Seok Kim

Alternative Fuels and Power System Research Division, Korea Research Institute of Ships and Ocean Engineering (KRISO)

(Previously) Offshore Platform Research Division at KRISO

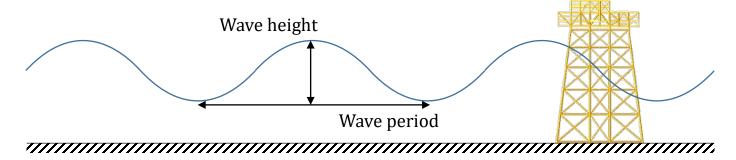
0. Introduction

□ What is uncertainty?

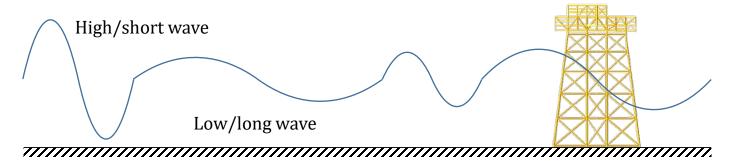
Uncertainties in material properties

Same material

Uncertainties in loads


Different results due to different material properties

Smaller mean value


0. Introduction

- How to consider uncertainties Statistical approach
 - Designing an offshore platform How can we consider the waves?

Assumption: sinusoidal wave

Reality: Variability \rightarrow What wave should we consider as design criteria?

- In practice, we define a deterministic design wave with certain return period (i.e., 100 years).
- What if a larger wave occur? When will it occur? → Uncertainty, Probability

0. Introduction

Contents of this presentation

- How offshore platform is designed and evaluated in practice.
- How to consider uncertainties for designing an offshore platform.
- Optimization of an offshore platform considering uncertainties.
- Target offshore platform
 - Installation site: the North Sea.
 - Water depth: 130m
 - Topside weight: ~20,000ton
 - Supporting structure: ~13,200ton



Figure 1. Target installation site (By Halava)

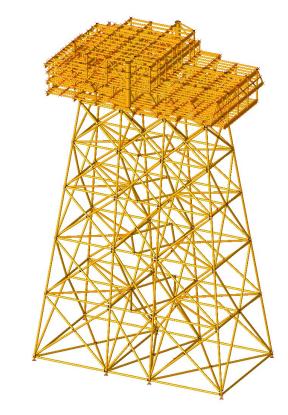
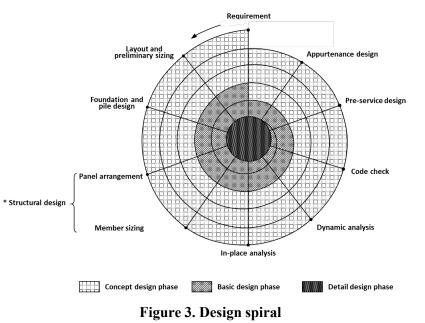



Figure 2. KRISO developed fixed-type offshore platform

1. Designing and Evaluating an Offshore Platform

Design

- Designing offshore platform is followed by rules and codes of classification society.
- Environmental conditions are defined with certain return period based on observed data of the installation site.
- Structural safety evaluation
 - Structural safety is evaluated for various load cases which are the combination of self weight, environmental(direction), and operational loads.
 - Unity check value: ratio of acting stress and allowable stress.

Table. 1 Environmental conditions con	nsidered for the design
---------------------------------------	-------------------------

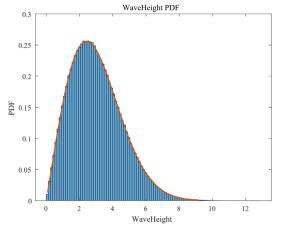
Environmental conditions	Value
Wave height (100 years return period)	15.00 (m)
Wave period (100 years return period)	15.50 (sec)
Wind speed (100 years return period)	40.50 (m/s)
Current speed (at surface)	2.007 (m/s)

Table. 2 Structural safety evaluation result

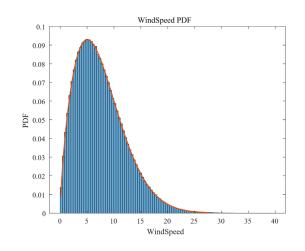
	Criteria	Load Case
North Sea (Tp 15.5 sec)	0.4148 (Safe, <1.0)	LMU

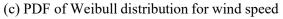
2. Uncertainties on the Offshore Platform

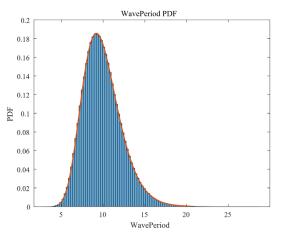
Uncertainties from environmental conditions

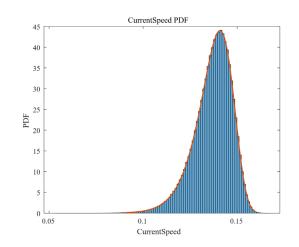

- Variability exist in environmental conditions such as winds, waves, and currents.
- We utilized references to determine the statistical characteristics of environmental conditions such as distribution type, distribution parameters, mean, and STD.
- Compared to the rules and standards, return periods are from 0 to infinite years.

Name	Distribution Type	Distribution Parameters	Mean	STD
Marginal distribution of wind speed, f_{U_w} , [m/s]	Weibull	Shape = 1.708, Scale = 8.426	7.5197	4.5290
Conditional distribution of significant wave height given wave speed, $f_{H_S U_W}$, [m]	Weibull	Shape = $2.0 + 0.135u_w$, Scale = $1.8 + 0.100u_w^{1.322}$	3.0014	1.5451
Conditional distribution of Peak period given wave height and wind speed, $f_{T_p H_s,U_w}$, [sec]	Lognormal	$\begin{split} \mu_{T_p} &= (4.883 + 2.68 h_s^{0.529}) \\ \left[1 - 0.19 \left(\frac{u_w - (1.764 + 3.426 h_s^{0.78})}{1.764 + 3.426 h_s^{0.78}} \right) \right], \\ \sigma_{T_p} &= (-1.7 \cdot 10^{-3} \\ &+ 0.259 e^{-0.113 h_s}) \end{split}$	9.9360	2.2929
Marginal distribution of current speed, f_{V_c} , [m/s]	Weibull	$\mu_{V_c} = 0.137,$ $\sigma_{V_c} = 0.01$	0.1370	0.0100


Table 3. Statistical characteristics of environmental variables


2. Uncertainties on the Offshore Platform


Uncertainties from environmental conditions


(a) PDF of Weibull distribution for wave height

(b) PDF of Log normal distribution for wave period

(d) PDF of Weibull distribution for current speed (surface)

Figure 4. PDF of environmental conditions

2. Uncertainties on the Offshore Platform

Uncertainties from material properties and manufacturing

- Variability also exists in material properties and manufacturing.
- Based on experimental data, the statistical characteristics are defined.

Table 4. Statistical characteristics of material properties

Name	Distribution Type	Nominal Design used in Analysis	Mean	STD
Elastic Modulus, $[kN/cm^2]$	Log normal	20.50	21.00	1.05
Yield Strength, $[kN/cm^2]$	Log normal	35.50	39.888	2.2736

Table 5. Statistical characteristics of manufacturing tolerance

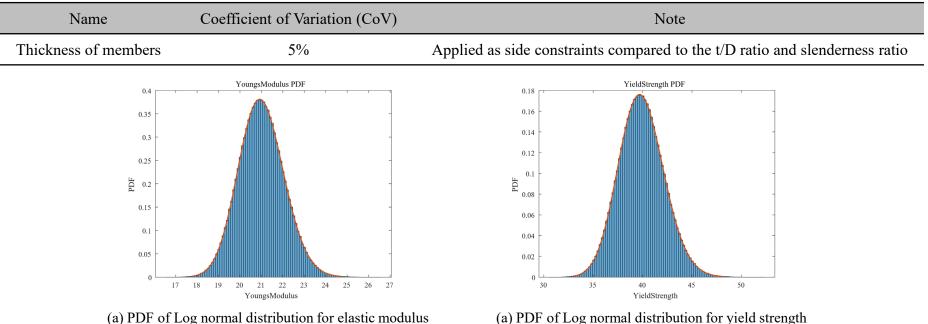


Figure 5. PDF of material properties

3. Structural Safety considering Uncertainties

Uncertainty quantification and reliability analysis of the initial design

- UQ: how the outputs are affected by the uncertainties.
- RA: what are the probability of failure (violation of criteria) due to uncertainties.
- Analysis solver: FEM based offshore platform analysis code
- UQ and RA: RAMDO by RAMDO Solutions

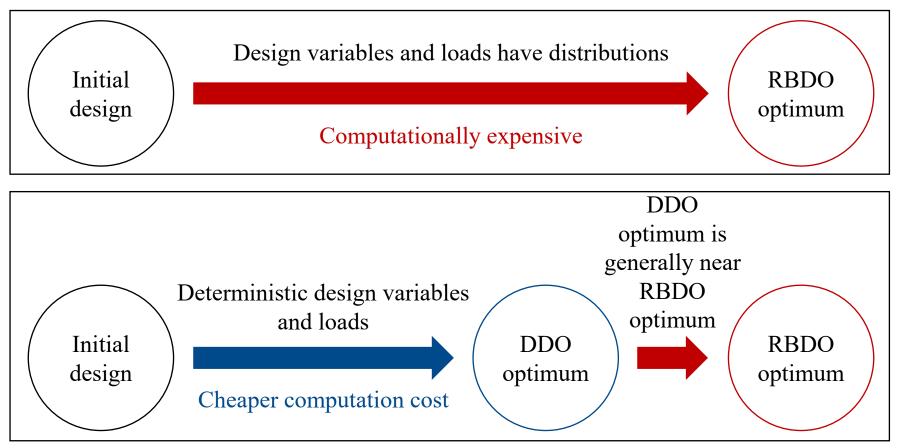
Joint0 unity check, Re = 100%

Joint51 unity check, Re = 100%

Figure 6. Uncertainty quantification and reliability analysis results for the initial offshore platform design

- The initial design turned out to be too conservative \rightarrow cost efficiency

Target reliability: 99.865%


Table 6. Reliability analysis result at initial design

Reliability of joint stress unity check values								
Location	Joint51	Joint52	Joint53	Joint54	Joint0	Joint1	Joint2	Joint3
Reliability (%)	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%

4. Optimization of the Offshore Platform

Efficient optimization considering uncertainties

- We want make the offshore platform cost efficient and safe considering uncertainties → Reliability-Based Design Optimization.
- RAMDO offers efficient optimization method considering uncertainties.

4. Optimization of the Offshore Platform

Deterministic Design Optimization (DDO)

- Design variables and loads are deterministic.
- Objective function is to minimize the weight of the structure.
- 74 design variables, and total 91(initial 83, 8 added) constraints are defined.

Figure 8. DDO history

Figure 9. Uncertainty quantification at DDO optimum

Table 8. Reliability at DDO optimum (only ones below target reliability are tabulated)

Constraint	Joint #51 UC	Joint #52 UC	Joint #53 UC	Joint #54 UC	Joint #0 UC	Joint #1 UC	Joint #2 UC	Joint #3 UC
DDO optimum	57.491%	49.669%	49.670%	57.388%	83.788%	83.758%	83.461%	83.439%

4. Optimization of the Offshore Platform

□ Reliability-Based Design Optimization (RBDO)

- Design variables and loads have distributions.
- Objective function is to minimize the weight of the structure.
- 37 design variables, and 8 constraints are defined. (Target Re = 99.865%)

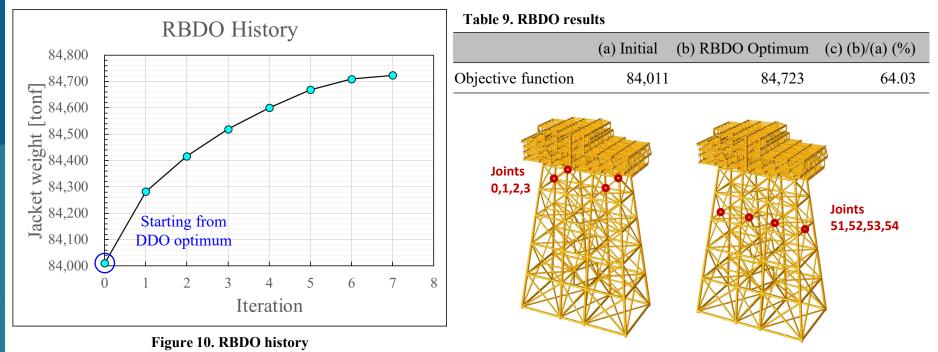
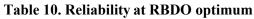
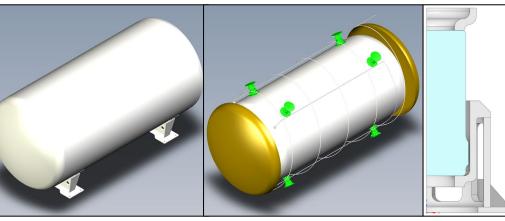



Figure 11. Location of the joints

Constraint	Joint #51 UC	Joint #52 UC	Joint #53 UC	Joint #54 UC	Joint #0 UC	Joint #1 UC	Joint #2 UC	Joint #3 UC
DDO optimum	57.491%	49.669%	49.670%	57.388%	83.788%	83.758%	83.461%	83.439%
RBDO optimum	99.922%	99.865%	99.865%	99.919%	99.871%	99.873%	99.865%	99.866%

5. Optimization via RAMDO – Based on Our Experience


D Pros

- RAMDO can be integrated with any SWs as simulation solver.
- Compared to other optimization tools, RAMDO provides accurate and reliable design optimum → optimum is obtained from sampling point.
- Easy customization to user specific problem \rightarrow interactive and professional staffs.
- Validation and Verification: can validate your simulation model with test data¹).

¹⁾ Moon, M-Y., et al, "Uncertainty Quantification and Statistical Model Validation for an Offshore Jacket Structure Panel Given Limited Test Data and Simulation Model," Structural and Multidisciplinary Optimization, **61**, 2020.

Cons

- When considering uncertainties, input information is expensive.
- Computational cost for RBDO is expensive \rightarrow reduce the dimension of problem.

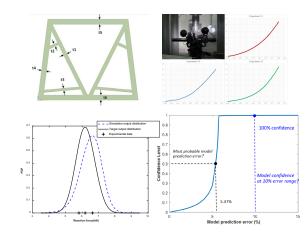


Figure. Design optimization of LH₂ storage tank support structures via RAMDO

Figure. Statistical model validation via RAMDO¹⁾13/14

Conclusions

□ Optimization of offshore platform considering uncertainties

- Uncertainties from environmental loads, material properties, and manufacturing tolerance are considered.
- When uncertainties are considered, structural safety is evaluated and is compared with the conventional rule based approach.
- To enhance the structural safety(=reliability), and to reduce the weight of the structure, an efficient RBDO is carried out utilizing RAMDO.

RAMDO as optimization tool

- Compared to other optimization tools, RAMDO provides accurate and reliable solutions.
- It can be integrated with any SWs as simulation solver.
- For computational efficiency, reducing the dimension of problem is essential.

Thank You

Korea Research Institute of Ships & Ocean Engineering

Contact: Hyun-Seok Kim hskim85@kriso.re.kr

For RAMDO related questions,

Contact: Nicholas Gaul nicholas-gaul@ramdosolutions.com