

Innovating Energy Technology

DISTRIBUTION

Air Circuit Breakers **DW Series**

DW series ACB

The standard for power circuit breakers around the world.

Over the years, other major manufacturers have tried to keep up by developing products incorporating DW's most innovative features, including the breaking principle, modular design and the use of composite materials.

In addition to the traditional features of power circuit breakers (withdrawability, discrimination and low maintenance), DW ranges offer built-in communications and metering functions, all in optimised frame sizes.

DW incorporate the latest technology to enhance both performance and safety. Easy to install, with user-friendly, intuitive operation and environment-friendly design, DW are, quite simply, circuit breakers of their time.

Covering all your applications

DW meets the needs of all types of LV electrical distribution networks.

Building

Hotels Hospitals Offices Retail

Data Centres and Networks

Industry

Mining and minerals Automotive Food and beverage Chemical industry

Energy and Infrastructures

Airports Oil and gas Water Electrical energy Marine

An answer to specific applications

- Corrosion protection
- Earthing switches
- Automatic transfer switching equipment (ATSE) for emergency power systems
- High electrical endurance applications: DW series is a high performance device offering high breaking capacity (Icu: 50 kA/480 V) and a high level of discrimination, all in a small volume.

All standards

DW is compliant with international standards IEC 60947-1 and 2, IEC 68230 for type 2 tropicalisation.

One family and two frame sizes

• DW series, in two frame sizes, one from 800 to 4000 A and the other from 4000 A to 6300 A.

2 performance levels

- H1 for industrial sites with high short-circuit levels or installations with two parallel-connected transformers.
- H2 high-performance for heavy industry where very high short-circuits can occur.

2 sizes

DW 800 to 4000 A

DW 4000 to 6300 A

Optimised volumes and ease of installation

Aiming at standardising electrical switchboards at a time when installations are increasingly complex, DW provides an unequalled simplicity, both concerning choice and installation.

Maximum security

The arc chutes absorb the energy released during breaking, thus limiting the stresses exerted on the installation. They filter and cool the gases produced, reducing effects perceptible from the outside.

Optimised volumes

Up to 4000 A, DW circuit breakers are all the same size, From 4000 A to 6300 A, there is just one size.

Standardisation of the switchboard

With optimised sizes, DW ranges simplify the design of switchboards and standardise the installation of devices:

- three connection layouts:
 - one from 800 to 3200 A
 - one for 4000 A
 - one up to 6300 A
- horizontal or vertical rear connections can be modified on-site by turning the connectors 90° or they can even be replaced by front connection terminals.
- identical connection terminals for the fixed or draw-out version for each rating.
- front connection requires little space because the connectors not increase the depth of the device.

Practical installation solutions

The DW range further improves the installation solutions that have built the success of its predecessors:

- incoming connection to top or bottom terminals
- no safety clearance required
- connection:
 - · horizontal or vertical rear connection
 - · front connection with minimum extra space
 - mixed front and rear connections
- 115 mm pole pitch on all versions
- no derating up to 55 °C and 4000 A.

Compliance with environmental requirements The materials used for DW are not potentially dangerous to the environment and are marked to facilitate sorting for recycling. Production facilities are non-polluting in compliance with the ISO 14001 standard.

Monitoring and protecting your low voltage network

DW can be integrated in a general supervision system to optimise your electrical installation.

Control units

All DW are equipped with an electronic control unit that offers a complete set of protections and state of the art measurements.

Ensuring safety at any time

All DW circuit breakers are equipped with an electronic control unit that offers all types of current and advanced protection, measurement and communication. Protection functions are separated from the measurement functions and are managed by an ASIC electronic component. This independence guarantees immunity from conducted or radiated disturbances and ensures the highest degree of reliability.

Maximising continuity of service

Because a LV power supply interruption is unacceptable especially in critical power applications, an automatic system is required for LV transfer switching. For your peace of mind, DW enables automatic control and management of power sources in your low voltage distribution network guaranteeing the hi-reliability of your installation.

Measurement functions are controlled by an additional microprocessor. Protection functions are electronically managed independently of measurement functions. An ASIC (Application-Specific Integrated Circuit) is common to all trip units, which boosts immunity to conducted or radiated interference and increases reliability.

Presentation

depending on the case.

This overview describes all the functions offered by DW devices. The two product families have identical functions implemented using the same or different components

General overview

Detailed contents

Specifications Ratings: 800 to 6300 A.

- Circuit breakers type H1, H2.
- 3 or 4 poles.
- Fixed or drawout versions.
- Protection derating.

Control units

Ammeter A and Energy E

- 2.0 basic protection
- 5.0 selective protection
- 6.0 selective + earth-fault protection
- 7.0⁽¹⁾ selective + earth-leakage protection

Power meter P

- 5.0 selective protection
- 6.0 selective + earth-fault protection
- 7.0 selective + earth-leakage protection

Harmonic meter H

- 5.0 selective protection
- 6.0 selective + earth-fault protection
- 7.0 selective + earth-leakage protection
- External sensor for earth-fault protection.
- Rectangular sensor for earth-leakage protection.
- Setting options (long-time rating plug):
 - low setting 0.4 to 0.8 x lr
 - high setting 0.8 to 1 x Ir
 - without long-time protection.
- External power-supply module.
- Battery module.
 - (1) Only for ammeter A.

14 H 111

Operating assistance

Integration of measurement functions provides operators with operating assistance functions including alarms tripped by user-selected measurement values, time-stamped event tables and histories, and maintenance indicators.

Communication

- COM option in DW.
- DW in a communication network.

page 16

page 12

8

page 29

page 33

Connections

- Rear connection (horizontal or vertical).
- Front connection.
- Mixed connections.
- Optional accessories:
 - bare-cable connectors and connector shields
 - terminal shields
 - vertical-connection adapters
- cable-lug adapters
- interphase barriers
- spreaders
- disconnectable front-connection adapter
- safety shutters, shutter locking blocks, shutter position indication and locking.

Locking

- Pushbutton locking by padlockable transparent cover.
- OFF-position locking by padlock or keylock.
- Chassis locking in disconnected position by keylock.
- Chassis locking in connected, disconnected and test positions.
- Door interlock (inhibits door opening with breaker in connected position).
- Racking interlock (inhibits racking with door open).
- Racking interlock between crank and OFF pushbutton.
- Automatic spring discharge before breaker removal.

Mismatch protection.

Indication contacts

Standard or low-level contacts:

- ON/OFF indication (OF)
- "fault trip" indication (SDE)
- carriage switches for connected (CE) disconnected (CD) and test (CT) positions.
- Programmable contacts:
 - · 2 contacts (M2C)

• 6 contacts (M6C). Remote operation

- Remote ON/OFF:
- gear motor
- XF closing or MX opening voltage releases
- PF ready-to-close contact

options:

- RAR automatic or RES electrical remote reset
- BPFE electrical closing pushbutton.
- Remote tripping function:
 - MN voltage release
 - standard
 - adjustable or non-adjustable delay
 - or second MX voltage release.

page 44

page 40

OF contact.

page 46

Gear motor.

MX, XF and MN volage releases.

Accessories

- Auxiliary terminal shield.
- Operation counter.
- Escutcheon.
- Transparent cover for escutcheon.
- Escutcheon blanking plate.

page 50

Catalog Disclaimer

The information contained in this catalog does not constitute an express or implied warranty of quality, any warranty of merchantability of fitness for a particular purpose is hereby disclaimed.

Since the user's product information, specific use application, and conditions of use are all outside of Fuji Electric FA Components & Systems'control, it shall be the responsibility of the user to determine the suitability of any of the products mentioned for the user's application.

One Year Limited Warranty

The products identified in this catalog shall be sold pursuant to the terms and conditions identified in the "Conditions of Sale" issued by Fuji Electric FA with each order confirmation.

Except to the extent otherwise provided for in the Conditions of Sale issued by Fuji Electric FA, Fuji Electric FA warrants that the Fuji Electric FA products identified in this catalog shall be free from significant defects in materials and workmanship provided the product has not been: 1) repaired or altered by others than Fuji Electric FA; 2) subjected to negligence, accident, misuse, or damage by circumstances beyond Fuji Electric FA's control; 3) improperly operated, maintained or stored; or 4) used in other than normal use or service. This warranty shall apply only to defects appearing within one (1) year from the date of shipment by Fuji Electric FA, and in such case, only if such defects are reported to Fuji Electric FA within thirty (30) days of discovery by purchaser. Such notice should be submitted in writing to Fuji Electric FA at 5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, Japan. The sole and exclusive remedy with respected to the above warranty whether such claim is based on warranty, contract, negligence, strict liability or any other theory, is limited to the repair or replacement of such product or, at Fuji Electric FA does not make any other representations or warranties, whether oral or in writing, expressed or implied, including but not limited to any warranty regarding merchantability or fitness for a particular purpose. Except as provided in the Conditions of Sale, no agent or representative of Fuji Electric FA is authorized to modify the terms of this warranty in writing or orally.

In no event shall Fuji Electric FA be liable for special, indirect or consequential damages, including but not limited to, loss of use of the product, other equipment, plant and power system which is installed with the product, loss of profits or revenues, cost of capital, or claims against the purchaser or user of the product by its customers resulting from the use of information, recommendations and descriptions contained herein. The purchaser agrees to pass on to its customers and users, in writing at the time inquiries and orders are received by buyer, Fuji Electric FA's warranty as set forth above.

A Safety Considerations

- Operate (keep) in the environment specified in the operating instructions and manual. High temperature, high humidity, condensation, dust, corrosive gases, oil, organic solvents, excessive vibration or shock might cause electric shock, fire, erratic operation or failure.
- For safe operation, before using the product read the instruction manual or user manual that comes with the product carefully or consult the Fuji sales representative from which you purchased the product.
- Products introduced in this catalog have not been designed or manufactured for such applications in a system or equipment that will affect human bodies or lives.
- Customers, who want to use the products introduced in this catalog for special systems or devices such as for atomic-energy control, aerospace use, medical use, passenger vehicle, and traffic control, are requested to consult with Fuji Electric FA.
- Customers are requested to prepare safety measures when they apply the products introduced in this catalog to such systems or facilities that will affect human lives or cause severe damage to property if the products become faulty.
- For safe operation, wiring should be conducted only by qualified engineers who have sufficient technical knowledge about electrical work or wiring.
- Follow the regulations of industrial wastes when the product is to be discarded.
- For further questions, please contact your Fuji sales representative or Fuji Electric FA.

Air Circuit Breakers DW Series

	<u>v</u>
Functions and characteristics	
Specifications	
. Selection criteria	
DW08 to DW63 installation characteristics	
Common characteristics	
Control units	
Protection only	
Ammeter A	
Energy meter E	
Power meter P	
Harmonics meter H	
Operating assistance	
Communication	
Connections	
Locking	
Indication contacts	
Remote operation	
Accessories	
Installation recommendations	
Dimensions and connection	
DW08 to DW32 Fixed 3/4 pole device	
DW08 to DW32 Drawout 3/4 pole device	
DW40 Fixed 3/4 pole device	
DW40 Drawout 3/4 pole device	
DW40b to DW63 Fixed 3/4 pole device	
DW40b to DW63 Drawout 3/4 pole device	
DW accessories	
Electrical diagrams	
DW08 to DW63 Fixed and drawout devices	
Communication	
Additional characteristics	
Order form	

Page

Specifications

Selection criteria

	Standard applications	
	DW08DW40	
	H1	H2
Type of application	Circuit breaker for industrial sites with high short-circuit currents	High-performance circuit breaker for heavy industry with high short-circuit currents
Icu/Ics at 440 V	65 kA	100 kA
Position of neutral	Left or right	Left or right
Fixed	F	F
Drawout	D	D
Switch-disconnector version	Yes	Yes
Front connection	Yes up to 3200 A	Yes up to 3200 A
Rear connection	Yes	Yes
Type of Intelligent control unit	A, E, P, H	A, E, P, H

DW08 to DW63 installation characteristics

Circuit brea	ker	DW08, DV	V10, DW12, DW16	DW20		DW25, DV	W32, DW40	DW40b,	DW50,DW63	
Туре		H1	H2	H1	H2	H1	H1 H2		H2	
Connection										
Drawout	FC	•	•	•	•	• (1)	• (1)	-	-	
	RC		•	•	•	•	•	•	•	
Fixed	FC	•	•	•	•	• (1)	• (1)	-	-	
	RC	•	•	•	•	•	•	•	•	
Dimensions	s (mm) H x W :	хD								
Drawout	3P	439 x 441	x 395					479 x 786 x 395		
	4P	439 x 556	x 395					479 x 1016 x 395		
Fixed	3P	352 x 422	x 297					352 x 767 x 297		
	4P	352 x 537	x 297					352 x 997 x 297		
Mass (kg) (a	approximate)									
Drawout	3P/4P	90/120						225/300		
Fixed	3P/4P	50/65								

Note: (1) Except 4000.

Common charac	teristics				
Number of poles				3/4	
Rated insulation vol			Ui		1250 for H10, HA10
Impulse withstand vertice Rated operational		つ/co 山っ)	Uimp Ue	<u>12</u> 690	12 1150 for H10, HA10
		U/OU FIZJ	IEC		· · · · · · · · · · · · · · · · · · ·
Suitability for isolation	วท		60947-2		
Degree of pollution			IEC 60664-1	4 (100	00 V) / 3 (1250 V)
Basic circuit-break					
Circuit-breaker as	per IEC 60947	7-2		: 10	
Rated current (A)	A 1			at 40	°C / 50 °C ⁽¹⁾
Rating of 4th pole (A Sensor ratings (A)	1)				
Sensor raings (A)					
Type of circuit break					
Ultimate breaking ca	apacity (kA rm	s)	lcu		15/440 V
V AC 50/60 Hz		,		525 V	
				690 V	
				1150	
Rated service break	ting capacity (P	<u>(Arms)</u>	lcs	% lcu	1
Utilisation category	· · · · · · · · · · · · · · · · · · ·	··· • · ·			
Rated short-time wit V AC 50/60 Hz		. ,	Icw	1 s 3 s	
Integrated instantan $\pm 10 \%$	-	on (kA peak			
Rated making capac	city (kA peaк)		lcm		115/440 V
V AC 50/60 Hz				525 V	
				690 V 1150	
Break time (ms) betw	veen tripping or	rder and arc		1100	V
extinction	/cci i i i ppi i i i i i i i i i i i i i				
Closing time (ms)					
Mechanical and ele	ectrical durab	bility as per IE	C 60947-2/3	3 at In/le	e
Service life	Mechanical	with maintena			
C/O cycles x 1000		without mainte	enance		
Type of circuit brea	aker				
Rated current			In (A)		
C/O cycles x 1000	Electrical	without mainte	enance	440 V	
IE C 60947-2				690 V	
The of elecult brow				1150	V
Type of circuit brea Rated operational			le (A)	AC23	5 A
C/O cycles x 1000		without mainte		440 V	
IEC 60947-3	Electrica	WILLIOULITIATIA	Hance	440 V 690 V	
Type of circuit brea	ekor			000 •	
Rated operational			le (A)	AC3 (3)
Motor power	<u>burren</u>				115 V (kW)
Motor pone.					⁽²⁾ (kW)
				690 V	
C/O cycles x 1000	Electrical	without mainte	enance		(100) 690 V ⁽²⁾
IEC 60947-3 Annex					

Note: (1) 50 °C: rear vertical connected. Refer to temperature derating tables for other connection types.
(2) Available for 480 V NEMA.
(3) Suitable for motor control (direct-on-line starting).
(4) The use of DW08 to DW20 H1 in IT systems is limited to 500 V network voltage.

Sensor selection												
Sensor rating (A)	400	630	800	1000	1250	1600	2000	2500	3200	4000	5000	6300
Ir threshold setting(A)	160	250	320	400	500	630	800	1000	1250	1600	2000	2500
	to 400	to 630	to 800	to 1000	to 1250	to 1600	to 2000	to 2500	to 3200	to 4000	to 5000	to 6300

DW08	DW10	DW12	DW16	DW20	DW25	DW32	DW40	DW40b	DW50	DW63
	1	1				1			T	1
800	1000			2000	2500	3200	4000	4000	5000	6300
800	1000		1600	2000	2500	3200	4000	4000	5000	6300
400 to 800	400 to 1000	630 to 1250	800 to 1600	1000 to 2000	1250	1600	2000	2000	2500	3200
H1 ⁽⁴⁾				H1 ⁽⁴⁾ H2	H1	H2	to 4000		to 5000	10 630
	H2							H1	H2	
65 65	100 85			65 100 65 85	65 65	100 85		100 100	150 130	
					65	85		100	100	
65	85 -			65 85	60	60		100	-	
100 %	-			100%	100 %	-		100 %	-	
B				B	B			B		
65	85			65 85	65	85		100	100	
36	50			36 75	65	75		100	100	
								100		
-	190			- 190	-	190		-	270	
143	220			143 220	143	220		220	330	
143	187			143 187	143	187		220	286	
143	187			143 187	143	187		220	220	
-	-				-	-		-	-	
25	25			25 25	25	25		25	25	
< 70				< 70	< 70			< 80		
25				20				10		
12.5				10				5		
H1/H2				H1/H2	H1/H2			H1	H2	
800/1000/12	250/1600			2000		00/4000			000/630	
10				8	5			1.5	1.5	
10				6	2.5			1.5	1.5	
-				-	-			-	-	
H1/H2				H1/H2	H1/H2			H1/H2		
800/1000/12	250/1600			2000		00/4000			000/630	0
10				8	5			1.5		
10				6	2.5			1.5		
H1/H2				H1/H2						
800	1000		1600	2000						
335 to 450	450 to 560			900 to 1150						
400 to 500	500 to 630			1000 to 1300						
≤ 800	800 to 1000	1000 to 1250	1250 to 1600	1600 to 2000						
6										

Control units

All DW circuit breakers are equipped with a Intelligent control unit that can be changed on site. Control units are designed to protect Power circuits and loads. Alarms may be programmed for remote indications. Measurements of current, voltage, frequency, power and power quality optimise continuity of service and energy management.

Dependability

Integration of protection functions in an ASIC electronic component used in all Intelligent control units guarantees a high degree of reliability and immunity to conducted or radiated disturbances. On Unit A, E, P and H control units, advanced functions are managed by an independent microprocessor.

Accessories

Certain functions require the addition of Intelligent control unit accessories, described on page 31.

The rules governing the various possible combinations can be found in the documentation accessible via the Products and services menu of the www.schneider-electric.com web site.

Unit name codes

X: type of protection

- 2 for basic protection
- 5 for selective protection
- 6 for selective + earth-fault protection
- \bullet 7 for selective + earth-leakage protection.

Y: control-unit generation

Identification of the control-unit generation. "0" signifies the first generation.

- Z: type of measurement
- A for "ammeter"
- E for "energy"
- P for "power meter"
- H for "harmonic meter".

Protection: long time + short time + instantaneous

Protection: long time + short time + instantaneous + earth fault

Unit 7: selective + earth-leakage protection

Protection: long time + short time + instantaneous + earth leakage up

- to 3200A
- 10 3200A

Measurements and programmable protection

A: ammeter

I₁, I₂, I₃, I_N, I_{earth-fault}, I_{earth-leakage} and maximeter for these measurements
 fault indications
 settings in amperes and in seconds.

E: Energy	P: A + power meter + prog	grammable protection				
 incorporates all the rms measurements of Unit A, plus voltage, power factor, power and energy metering measurements 	 factor and maximeters and IDMTL long-time protection frequency, voltage and cup power 	VAR, VA, Wh, VARh, VAh, Hz, V _{peak} , A _{peak} , power I minimeters In, minimum and maximum voltage and rrent imbalance, phase sequence, reverse ection depending on power or current				
 calculates the current demand value 	 measurements of 	H: P + harmonics				
 "Quickview" function for the automatic cyclical display of the most useful values (as standard or by selection). 		 power quality: fundamentals, distortion, amplitude and phase of harmonics up to the 31st order waveform capture after fault, alarm or on request enhanced alarm programming: thresholds and actions. 				

2.0	Biomega 20	2.0 A	2.0 E			
5.0		5.0 A	5.0 E	5.0 P	5.0 H	
		6.0 A	6.0 E	6.0 P	6.0 H	
		7.0 A		7.0 P	7.0 H	

Long-time threshold and tripping delay

- Overload alarm (LED)
- 3 Short-time threshold and tripping delay (control unit 2.0 has no time delay dial
- switch: fixed at instantaneous protection) Instantaneous trip threshold (control unit 2.0 has no dial) 4
- Long-time rating plug screw
- 5 Test connector 6

Note: This product comes with a transparent lead-seal cover as standard.

Protection only

Control units 2.0/5.0 protect the main circuit. Control unit 5.0 can perform time co-ordination during a short circuit incident.

Protection

The dial can set up the trip current and time delay.

Overload protection

Adjust true effective value for long-time delay protection. Thermal memory: Stores thermal images before and after tripping.

The long-time optional rating plug enables you to set up a current in smaller increments in a narrow range. The OFF plug enables you to cancel the overload protection for long-time delay.

Short circuit protection

Short-time and instantaneous delay protection. Possible to select definite or inverse time (I2t OFF or ON) as the short-time delay characteristics.

Neutral protection

A three-pole circuit breaker cannot protect a neutral pole. For neutral pole protection, a four-pole circuit breaker can select none (4P3D), 50% (3D+N/2), or full (4P4D) by using a changeover switch.

Display

The LED on the front can indicate overload (by default). When the current exceeds a long-time trip threshold, the LED lights up.

Test

Connect a mini or portable test kit to the test connector to confirm the circuit breaker operation after mounting a control unit or accessory.

Ammeter A

Unit A control units measure the true (rms) value of currents. They provide continuous current measurements from 0.2 to 1.2 ln and are accurate to within 1.5 % (including the sensors). A digital LCD screen continuously displays the most heavily loaded phase (lmax) or displays the I1, I2, I3, IN, Ig,I Δ n, stored-current (maximeter) and setting values by successively pressing the navigation button. The optional external power supply makes it possible to display currents < 20 % In. Below 0.1 In, measurements are not significant. Between 0.1 and 0.2 In, accuracy changes linearly from 4 % to 1.5 %.

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- •all "ammeter" measurements
- tripping causes
- maximeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection. Thermal memory: thermal image before and after tripping. Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug. Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection. Selection of I²t type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection. Selection of I²t type (ON or OFF) for delay.

Residual earth-leakage protection (Vigi).

Operation without an external power supply.

 Λ Protected against nuisance tripping. $\tilde{\Lambda}$ DC-component withstand class A up to 10 A.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a threeposition switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

- LEDs indicate the type of fault:
- overload (long-time protection Ir)
- Short-circuit (short-time lsd or instantaneous li protection)
- short-circuit (short-time is do instantaneous in protection • earth fault or earth leakage (Ig or $I\Delta n$)
- internal fault (Ap).

Internal fault (Ap)

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Unit 6.0 A and 7.0 A control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector. Unit A control units protect power circuits.

They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection, version 7 provides earth-leakage protection.

- 1 long-time threshold and tripping delay
- overload alarm (LED) at 1,125 lr
 short-time pick-up and tripping delay
- 3 short-time pick-up and trip
 4 instantaneous pick-up
- a instantal eous pick-up
 b earth-leakage or earth-fault pick-up and tripping delay
- 6 earth-leakage or earth-fault test button
- 7 long-time rating plug screw
- 8 test connector
- 9 lamp test, reset and battery test
- 10 indication of tripping cause
- 11 digital display
- 12 three-phase bargraph and ammeter13 navigation buttons
- Note: Unit A control units come with a transparent lead-seal cover as standard.

Protection													
			onit	2.0 A							-	t a I	*
Long time Current setting (A)			0.4	0.5	0.6	0.7	0.8	0.9	0.05	0.98	1	lr ⊸	
	1		-			-							
Tripping between 1.05 and 1.20 x I	Ir	tr (a)		1		4			16	20	ig plug		
Time setting	Accuracy (0 to 20.9/	tr (s)	0.5		2 50	4	8 200	12 300	400	20 500	24 600		
Time delay (s)	Accuracy: 0 to -30 %											tr 👔	
	Accuracy: 0 to -20 %		$0.7^{(1)}$		2	4	8	12	16	20	24		
	Accuracy: 0 to -20 %	7.2 x Ir					5.5	8.3	11	13.8	16.6	<	lsd
Thermal memory	0/		20 m	inutes	betor	e and	atter tr	ripping					
Note: (1) 0 to -40 % - (2) 0 to -60	J %											0	
Instantaneous	Ind. Inc.		4.5	0	0.5			-			10		
Pick-up (A)	Isd = lr x		1.5	2	2.5	3	4	5	6	8	10		
Accuracy: ±10 %			Max		مأه م ا مأ م								
Time delay					able tir time: 8		ms						
Protection					.0/7.0								30
Long time			Unit		6.0/7.0							^t ≜ ⊲∯⊳lr	
Current setting (A)	Ir = In x		0.4		0.6		0.8	0.9		0.98		(_l²to
Tripping between 1.05 and 1.20 x l	lr			r rang	es or c	lisable	e by ch	anging	g long	-time r	ating	🔪 tr	
11 0		t()	plug			4		10	10				
Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24		lsd
Time delay (s)	Accuracy: 0 to -30 %				50	100	200	300	400	500	600	<	T sd
	Accuracy: 0 to -20 %	6 x lr	0.7(1)		2	4	8	12	16	20	24		
<u> </u>	Accuracy: 0 to -20 %	7.2 x lr					5.5	8.3	11	13.8	16.6		v≪ a ⊳li
Thermal memory			20 m	inutes	befor	e and	after tr	ripping				0	
Note: (1) 0 to -40 % - (2) 0 to -60)%											-	
Short time	lad here		4.5	0	0.5	0	4	-	<u>_</u>	0	10		
Pick-up (A)	Isd = lr x		1.5	2	2.5	3	4	5	6	8	10		
Accuracy: ±10 %	0	10: 01											
Time setting tsd (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4						
		I ² t On	-	0.1	0.2	0.3	0.4						
Time delay (ms) at 10 x lr	tsd (max resettable tin	ne)	20	80	140	230	350						
(l ² t Off or l ² t On)	tsd (max break time)		80	140	200	320	500						
Instantaneous													
Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off		
Accuracy: ±10 %													
Time delay					able tir		ms						
					time:5	50 ms							
Earth fault			Unit									t♠	_l ² t or
Pick-up (A)	Ig = ln x		Α	В	С	D	E	F	G	Н	J	_ ⊥ lg	
Accuracy: ±10 %	ln ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	T	
	400 A < ln < 1250 A		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		tg
	ln ≥ 1250 A		500		720	800		960	1040	1120	1200	· · · · ·	7
Time setting tg (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4						
		I ² t On	-	0.1	0.2	0.3	0.4					0	
Time delay (ms)	tg (max resettable tim	ie)	20	80	140	230	350						
at In or 1200 A (I ² t Off or I ² t On)	tg (max break time)		80	140	200	320	500						
Residual earth leakage (Vigi)				7.0 A								t∳ 📥l∆n	
Sensitivity (A)	l∆n		0.5	1	2	3	5	7	10	20	30		
Accuracy: 0 to -20 %												4	Δt
Time delay ∆t (ms)	Settings		60	140	230	350	800					*	r
-	Δt (max resettable tim	e)	60	140	230	350	800					0	
	Δt (max break time)		140	200	320	500	1000)					
Ammeter			Unit	20/5	5.0 / 6.0	1/70	Δ						m
Type of measurements			Rang			5/1.0		uracy					
Instantaneous currents	l1, l2, l3, lN				1.2 x lr	,	±1.5						
motantaneous currents				In to I			±10°						
	$l_{g}(6.0 A)$				11								
	l∆n (7.0 A)		0 to 3				±1.5						
Current maximeters of	l1, l2, l3, lN		0 0	In to t	1.2 x lr		±1.5	0/					

Note: all current-based protection functions require no auxiliary source. The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Energy meter E

Unit E control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection.

In addition to the ammeter measurements of Unit A

- Unit E control units measure and display:
- current demand
- voltages: phase to phase, phase to neutral, average⁽¹⁾ and unbalanced⁽¹⁾
- ●instantaneous power: P, Q, S
- power factor: PF
- power demand: P demand
- energy: Ep, Eq⁽¹⁾, Es⁽¹⁾.

Accuracy of active energy Ep is 2 % (including the sensors). The range of measurement is the same as current with Unit A, depending of an external power supply module (24 V DC).

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- all "ammeter" and "energy" measurements
- enable connection to FDM
- tripping causes
- maximeter / minimeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.

Thermal memory: thermal image before and after tripping. Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug. Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection. Selection of I²t type (ON or OFF) for short-time delay.

Earth-fault protection

Source ground return earth fault protection. Selection of l²t type (ON or OFF) for delay.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible.

On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at 0.5 lr (4P 3d + N/2), neutral protection at lr (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping.

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

M2C programmable contacts

The M2C (two contacts) programmable contacts may be used to signal envents (Ir, Isd, Alarm Ir, Alarm Ig, Ig). They can be programmed using the keypad on the Unit E control unit or remotely using the COM option (BCM ULP).

Fault indications

- LEDs indicate the type of fault:
- overload (long-time protection Ir)
- •short-circuit (short-time lsd or instantaneous li protection)
- earth fault (Ig)
- ●internal fault (Ap).

Trip history

The trip history displays the list of the last 10 trips. For each trip, the following indications are recorded and displayed: ● the tripping cause: Ir, Isd, Ii, Ig or Auto-protection (Ap) trips

• the date and time of the trip (requires communication option).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Unit 6.0 E control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

- 1 long-time threshold and tripping delay
- overload alarm (LED) at 1,125 Ir
 short-time pick-up and tripping delay
- 4 instantaneous pick-up5 earth-leakage or earth-fault
- pick-up and tripping delay 6 earth-leakage or earth-fault
- test button7 long-time rating plug screw
- 8 test connector9 lamp test, reset and battery test
- indication of tripping cause
- 11 digital display12 three-phase bargraph and ammeter
- 13 navigation button "quick View" (only with Unit E)
- 14 navigation button to view menu contents
- 15 navigation button to change menu

Note: (1) Display on FDM only. Note: Unit E control units come with a transparent lead-seal cover as standard.

Dretection			Unit	0 0 E										
Protection			Unit	2.U E								t a i		
Long time			0.4	0.5	0.0	0.7			0.05	0.00		- 'T 📥	lr	
Current setting (A)			0.4	0.5	0.6	0.7	0.8	0.9		0.98				
Tripping between 1.05 and 1.20 x	Ir										ng plug			
Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24			
Time delay (s)	•	1.5 x lr			50	100	200	300	400	500	600		∖n tr	
	Accuracy: 0 to -20 %	6 x lr	0.7(1)	1	2	4	8	12	16	20	24			
	Accuracy: 0 to -20 %	7.2 x lr	0.7 (2)	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6		<u>)</u>	l a al
Thermal memory			20 m	inutes	befor	e and a	after tr	ipping						sd
Note: (1) 0 to -40 % - (2) 0 to -60)%											0		
Instantaneous														
Pick-up (A)	Isd = Ir x		1.5	2	2.5	3	4	5	6	8	10			
Accuracy: ±10 %	1 5u = 11 X		1.0	2	2.0	0	-	0	0	0	10			
Time delay			Max	rocott	able tir	mo· 20	me							
Time delay					time: 8		1115							
—						50 1115								
Protection			Unit	5.0/6	.0 E									
Long time												t 🛉 📥 I	lr	
Current setting (A)	Ir = ln x		0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1			1 12
Tripping botwoon 1 05 and 1 00 y	lr.		Othe	r rang	es or c	lisable	by ch	anging	g long	-time r	ating		tr	
Tripping between 1.05 and 1.20 x	II		plug				-						<u>}</u>	<u>↑</u> .₂
Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24		∕∖.	_ ∟l⁺t
Time delay (s)	Accuracy: 0 to -30 %	1.5 x lr		25	50	100	200	300	400	500	600		Σ_{i}	sd
	Accuracy: 0 to -20 %		0.7(1)		2	4	8	12	16	20	24		τ	_∆ tsd
	Accuracy: 0 to -20 %		-			-	5.5	8.3	11	-	16.6		L 7	
Thermal memory	Accuracy. 0 10 20 /0	7.2 / 11			befor					10.0	10.0			
	0/		2011	nutes	Delon	e anu a	aner n	ipping				0		
Note: (1) 0 to -40 % - (2) 0 to -60	J %													
Short time					~ -			-			- 10			
Pick-up (A)	Isd = lr x		1.5	2	2.5	3	4	5	6	8	10			
Accuracy: ±10 %														
Time setting tsd (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4							
		l²t On	-	0.1	0.2	0.3	0.4							
Time delay (ms) at 10 x lr	tsd (max resettable tin	ne)	20	80	140	230	350							
(I ² t Off or I ² t On)	tsd (max break time)	- /	80	140	200	320	500							
Instantaneous						020								
Pick-up (A)	li = ln x	_	2	3	4	6	8	10	12	15	off			
Accuracy: ±10 %	n = 117		2	0	-	0	0	10	12	15	011			
Time delay					able tir		ms							
					time:5	50 ms								
Earth fault			Unit											
Pick-up (A)	lg = ln x		А	В	С	D	E	F	G	Н	J	t		$ - ^2 t$
Accuracy: ±10 %	In ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		lα	- k∕-'''
	400 A < ln < 1250 A		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		.9	A .2.
	ln ≥ 1250 A		500	640	720	800	880	960	1040) 1120	1200		, tg	∟ l°t c
Time setting tg (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					- N	<u> </u>	
		l ² t On	-	0.1	0.2	0.3	0.4						\lor	
Time delay (ms)	tg (max resettable tim		20	80	140	230	350					0		
	•	(0)										-		
at In or 1200 A (I ² t Off or I ² t On)	tg (max break time)		80	140	200	320	500							
Energy			Unit	2.0/5	.0 / 6.0) E								
Type of measurements			Rang	je			Accu	uracy						
Instantaneous currents	l1, l2, l3, lN		0.2 x	In to 1	1.2 x lr	1	±1.5							
	lg (6.0 E)			x In to			±10 °							
Current maximeters of	l1, l2, l3, lN				1.2 x lr	ı	±1.5							
	11, 12, 13, 111				1.2 x lr									
Demand currents of I1, I2, I3, Ig	VID VOD VOT VIN V	/01	∪.∠ X	111101	ı.∠ x Ir	1	±1.5	/0						
Voltages	V12, V23, V31, V1N, V	v∠in,	100 t	o 690	V		±0.5	%						
	V3N						±2 %							
A otivice power	П						+2%	`						
	P			2000	NVV									
Active power Power factor	PF		0 to 1				±2 %)						
			0 to 1 30 to	2000			±2 %	>						

Note: all current-based protection functions require no auxiliary source. The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Power meter P

Protection 💥 + 🖪 **Protection settings**

The adjustable protection functions are identical to those of Unit A (overloads, short-circuits, earth-fault and earth-leakage protection).

Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option (BCM ULP).

IDMTL (Inverse Definite Minimum Time lag) setting

Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overloadprotection curve. This setting also ensures better operation of this protection function with certain loads.

Neutral protection

On three-pole circuit breakers, neutral protection may be set using the keypad or remotely using the COM option (BCM ULP), to one of four positions: neutral unprotected (4P 3d), neutral protection at 0.5 lr (4P 3d + N/2), neutral protection at lr (4P 4d) and neutral protection at 1.6 lr (4P 3d + 1.6N). Neutral protection at 1.6 Ir is used when the neutral conductor is twice the size of the phase conductors (major load imbalance, high level of third order harmonics).

On four-pole circuit breakers, neutral protection may be set using a three-position switch or the keypad: neutral unprotected (4P 3d), neutral protection at 0.5 lr (4P 3d + N/2), neutral protection at Ir (4P 4d). Neutral protection produces no effect if the long-time curve is set to one of the IDMTL protection settings.

Programmable alarms and other protection

Depending on the thresholds and time delays set using the keypad or remotely using the COM option (BCM ULP), the Unit P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option (BCM ULP). Each threshold overrun may be combined with tripping (protection) or an indication carried out by an optional M2C or M6C programmable contact (alarm), or both (protection and alarm).

Load shedding and reconnection

Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option (BCM ULP) or by an M2C or M6C programmable contact.

M2C / M6C programmable contacts

The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Unit P control unit or remotely using the COM option (BCM ULP).

Communication option (COM)

- The communication option may be used to:
- remotely read and set parameters for the protection functions
- transmit all the calculated indicators and measurements
- signal the causes of tripping and alarms
- consult the history files and the maintenance-indicator register.
- maximeter reset.

An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option (BCM ULP).

Unit P control units include all the functions offered by Unit E. In addition, they measure voltages and calculate power and energy values.

They also offer new protection functions based on currents, voltages, frequency and power reinforce load protection in real time.

- Long-time current setting and tripping delay.
- Overload signal (LED).
- 3 Short-time pick-up and tripping delay. 4
- Instantaneous pick-up. Earth-leakage or earth-fault pick-up and tripping delay. 5
- Earth-leakage or earth-fault test button. 6
- Long-time rating plug screw.
- 8 Test connector.
- Lamp + battery test and indications reset.
- 10 Indication of tripping cause.
- High-resolution screen 11
- Measurement display. 12
- Maintenance indicators. 13 Protection settings.
- 14 Navigation buttons. 15
- Hole for settings lockout pin on cover. 16
- Note: Unit P control units come with a non-transparent lead-seal cover as standard.

Protection					0/7.							
Long time (rms) Current setting (A)	lr = ln x		0.4		0.6 / 7 .0	0.7	0.8	0.9	0.05	0.98	-	₋ ^t ≜ di⊳lr
Tripping between 1.05 and 1.20 x											ng plug	
Time setting		r (s)	0.5	1	2	4	<u>8</u>	12	16	20	24	
Time delay (s)			12.5		50	100	200	300	400	500	600	- 🍾 ''
Time delay (5)		x lr	0.7(1)		2	4	8	12	16	20	24	lsd
	Accuracy: 0 to -20 % 7						5.5	8.3	11		16.6	
IDMTL setting	Curve slope		SIT	VIT	EIT	HVFus						- tsd
Thermal memory							after tr	ripping				- 🗸
Note: (1) 0 to -40 % - (2) 0 to -6	0%											L
Short time (rms)												- 0
Pick-up (A)	Isd = lr x		1.5	2	2.5	3	4	5	6	8	10	-
Accuracy: ±10 %												_
Time setting tsd (s)		't Off	0	0.1	0.2	0.3	0.4					
		t On	-	0.1	0.2	0.3	0.4					_
Time delay (ms) at 10 lr	tsd (max resettable time	e)	20	80	140	230	350					
<u>(I²t Off or I²t On)</u>	tsd (max break time)		80	140	200	320	500					-
Instantaneous	li la v		0	0	4	~		10	10	15	-"	- +/
Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off	t≱ _l²t or
Accuracy: ±10 % Time delay			Max	rocott	able ti	ma. 00	mc					- Lig 🗹
Time delay					time:		illis					
Earth fault				6.0 P	une.:	50 115						- tg
Pick-up (A)	Ig = ln x		A	B	С	D	E	F	G	Н	J	- -
Accuracy: ±10 %	$lg = 111 \times$ ln < 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	- ×
Accuracy. 10 /8	$400 \text{ A} < \ln < 1250 \text{ A}$		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	i	0
	$\ln \ge 1250 \text{ A}$		500	640	720	800	880	960			1200	
Time setting tg (s)		t Off	0	0.1	0.2	0.3	0.4	000	1010	/ 1120	1200	-
· · · · · · · · · · · · · · · · · · ·		't On	-	0.1	0.2	0.3	0.4					
Time delay (ms)	tg (max resettable time)		20	80	140	230	350					- t i di∆n
at In or 1200 A (I ² t Off or I ² t On)	tg (max break time)		80	140	200	320	500					
Residual earth leakage (Vigi)			Unit [·]	7.0 P								Δt
Sensitivity (A)	l∆n		0.5	1	2	3	5	7	10	20	30	
Accuracy: 0 to -20 %												
Time delay ∆t (ms)	Settings		60	140	230	350	800					- 0
	Δt (max resettable time)		60	140	230	350	800					-
	Δt (max break time)		140	200	320	500	1000)				
Alarms and other protection					5.0/7.	0 P						U
Current				shold			Dela					_ t A
Current unbalance	lunbalance				lavera	age	1 to 4					
Max. demand current	Imax demand : 11, 12, 13	, IN,	0.2 Ir	n to In			15 to	1500	S			- threshold
Earth fault alarm	1.		10.1-	100 0	(l.m. (3)		4 4 4 4 4	10 -				-
Valtaga	ļĻ		10 to	100 %	% In ⁽³⁾		1 to 1	IUS				$ \top$
Voltage Voltage unbalance	Uunbalance		2 to 2	20 0/ 1	Uave	rado	1 to 4	10 c				-
voltage unbalance	Oundalance				x betw		1 10 4	40 S				delay
Minimum voltage	Umin		phas		ix netw	VEE II	1.2 to	o 10 s				delay
					00 betv	voon						,
Maximum voltage (4)	Umax		phas			VCCII	1.2 to	o 10 s				0 I/U/P
Power			pilas	63								-
Reverse power	rP		5 to P	500 kV	V		0.2 t	o 20 s				-
Frequency			0.00		•		0.2 1					-
Minimum frequency	Fmin		45 to	Fmax	(1.2 to	o 5 s				-
Maximum frequency	Fmax			to 44				05s				
Phase sequence												_
Sequence (alarm)	ΔØ		Ø1/2	/3 or Ø	01/3/2		0.3 s	;				-
												K
Load shedding and reconnection	on				6.0/7.	0 P						
Measured value				shold			Dela					_ t A
Current	l_		0.5 to	5 1 lr p	er pha	ases		tr to 8				
Power	Р		200	W to	<u>10 MV</u>	V	10 to	3600	S			- threshold

Note: (3) In \leq 400 A 30 % 400 A < In < 1250 A 20 %

In ≥ 1250 A 10 %

(4) For 690 V applications, a step-down transformer must be used if the voltage exceeds the nominal value of 690 V by more than 10 %.

Note: all current-based protection functions require no auxiliary source.

Voltage-based protection functions are connected to AC power via a voltage measurement input built into the circuit breaker.

Measurements.....

The Unit P control unit calculates in real time all the electrical values

(V, A, W, VAR, VA, Wh, VARh, VAh, Hz), power factors and $\cos \varnothing$ factors.

The Unit P control unit also calculates demand current and demand power over an adjustable time period. Each measurement is associated with a minimeter and a maximeter. In the event of tripping on a fault, the interrupted current is stored. The optional external power supply makes it possible to display the value with the circuit breaker open or not supplied.

Instantaneous values

The value displayed on the screen is refreshed every second. Minimum and maximum values of measurements are stored in memory (minimeters and maximeters).

Currents					
Irms	A	1	2	3	N
	Α	E-fault		E-leaka	ge
I max rms	A	1	2	3	N
	Α	E-fault		E-leaka	ge
Voltages					-
Urms	V	12	23	31	
V rms	V	1N	2N	3N	
U average rms	V	(U12 + l	U23 + U3	31)/3	
U unbalance	%				
Power, energy					
P active, Q reactive,	W, Var,	Totals			
S apparent	VA				
E active, E reactive,	Wh,	Totals c	onsume	d - supplie	d
Eapparent	VARh,	Totals c	onsume	d	
	VAh	Totals s	upplied		
Power factor	PF	Total			
Frequencies		iotai			
F	Hz				

Demand metering

The demand is calculated over a fixed or sliding time window that may be programmed from 5 to 60 minutes. According to the contract signed with the power supplier, an indicator associated with a load shedding function makes it possible to avoid or minimise the costs of overrunning the subscribed power. Maximum demand values are systematically stored and time stamped (maximeter).

Currents					
demand	A	1	2	3	N
	А	E-fault		E-leak	age
I max demand	A	1	2	3	N
	А	E-fault		E-leak	age
Power					
P, Q, S demand	W, Var, VA	Totals			
P, Q, S max demand	W, Var, VA	Totals			

Minimeters and maximeters

Only the current and power maximeters may be displayed on the screen.

Time-stamping

Time-stamping is activated as soon as time is set manually or by a supervisor.

No external power supply module is required (max. drift of 1 hour per year).

Reset

An individual reset, via the keypad or remotely, acts on alarms, minimum and maximum data, peak values, the counters and the indicators.

Additional measurements accessible with the COM option (BCM ULP) $\ensuremath{\mathsf{COM}}$

Some measured or calculated values are only accessible with the COM communication option:

- I peak / $\sqrt{2}$, (I1 + I2 + I3)/3, I unbalance
- ●load level in % Ir
- total power factor.

The maximeters and minimeters are available only via the COM option (BCM ULP) for use with a supervisor.

Additional info

Accuracy of measurements (including sensors): voltage (V) 0.5 % current (A) 1.5 % frequency (Hz) 0.1 % power (W) and energy (Wh) 2 %.

Display of a voltage.

Display of a power.

Display of a demand power

Histories and maintenance indicators

The last ten trips and alarms are recorded in two separate history files that may be displayed on the screen:

- tripping history:
 - type of fault
 - date and time
 - values measured at the time of tripping (interrupted current, etc.)
- elarm history:
- type of alarm
- date and time
- values measured at the time of the alarm.

All the other events are recorded in a third history file which is only accessible through the communication network.

- Event log history (only accessible through the communication network)
 - modifications to settings and parameters
 - counter resets
 - system faults:
 - fallback position
 - thermal self-protection
 - loss of time
 - overrun of wear indicators
- test-kit connections
- etc.
- Note: all the events are time stampled: time-stamping is activated as soon as time is set manually or by a supervisor. No external power supply module is required (max. drift of 1 hour per year).

Maintenance indicators with COM option (BCM ULP)

A number of maintenance indicators may be called up on the screen to better plan for device maintenance:

- contact wear
- operation counter:
 - cumulative total
 - total since last reset.

Additional maintenance indicators are also available through the COM network, and can be used as an aid in troubleshooting:

- highest current measured
- number of test-kit connections

• number of trips in operating mode and in test mode.

Additional technical characteristics

Safety

Measurement functions are independent of the protection functions.

The high-accuracy measurement module operates independently of the protection module.

Simplicity and multi-language

Chinese, French, German...

Navigation from one display to another is intuitive. The six buttons on the keypad provide access to the menus and easy selection of values. When the setting cover is closed, the keypad may no longer be used to access the protection settings, but still provides access to the displays for measurements, histories, indicators, etc. Intelligent control unit is also multi-language, including the following languages: English, Spanish, Portuguese, Russian,

• energies are calculated on the basis of the instantaneous power values, in two manners:

- the traditional mode where only positive (consumed) energies are considered
- the signed mode where the positive (consumed) and negative (supplied) energies are considered separately
- measurement functions implement the new "zero blind time" concept which consists in continuously measuring signals at a high sampling rate. The traditional "blind window" used to process samples no longer exists. This method ensures accurate energy calculations even for highly variable loads (welding machines, robots, etc.).

Intelligent measurement

Measurement-calculation mode:

Display of a tripping history.

Display after tripping.

Hamonics meter H

In addition to the Unit P functions, the Unit H control unit offers:

- in-depth analysis of power quality including calculation of harmonics and the fundamentals
- diagnostics aid and event analysis through waveform capture
 enhanced alarm programming to analyse and track down a
- disturbance on the AC power system.

- phase by phase measurements of:
 - power, energy
- power factors
- calculation of:
 - current and voltage total harmonic distortion (THD)
 - current, voltage and power fundamentals
 - current and voltage harmonics up to the 31st order.

Instantaneous values displayed on the screen

Currents					
rms	A	1	2	3	N
	А	E-fault		E-leal	kage
max rms	A	1	2	3	N
	А	E-fault		E-leal	kage
Voltages					
Urms	V	12	23	31	
V rms	V	1N	2N	ЗN	
U average rms	V	(U12 + l	J23 +		
-		Ù31)/3			
U unbalance	%	,			
Power, energy					
P active, Q reactive,	W, Var, VA	Totals	1	2	3
S apparent					
E active, E reactive,	Wh, VARh,	Totals co	onsumed ·	- supplie	əd
E apparent	VAh		onsumed		
		Totals su	Jpplied		
Power factor	PF	Total	1	2	3
Frequencies					
F	Hz				
Power-quality inc					
Total fundamentals	S	UIP	QS		
THD	%	UΙ			
	Amplitude	3 5 7	9 11 13		

Harmonics 3, 5, 7, 9, 11 and 13, monitored by electrical utilities, are displayed on the screen.

Demand measurements

Similar to the Unit P control unit, the demand values are calculated over a fixed or sliding time window that may be set from 5 to 60 minutes.

Currents				
demand	A	1	2	3 N
	А	E-fault		E-leakage
max demand	A	1	2	3 N
	А	E-fault		E-leakage
Power				
P, Q, S demand	W, Var, VA	Totals		
P, Q, S max demand	W, Var, VA	Totals		

Maximeters

Only the current maximeters may be displayed on the screen.

Histories and maintenance indicators

These functions are identical to those of the Unit P.

Unit H control units include all the functions offered by Unit P. Integrating significantly enhanced calculation and memory functions, the Unit H control unit offers in-depth analysis of power quality and detailed event diagnostics.

It is intended for operation with a supervisor.

Note: Unit H control units come with a non-transparent lead-seal cover as standard.

Unit A/E/P/H integrat	ed Power Meter functions		Туре		Display
			A/E	P/H	Unit LCD
Display of protection	n settings				
Pick-ups (A) and delays	All settings can be displayed	Ir, tr, Isd, tsd, li, lg, tg	A/E	P/H	•
Measurements					
Instantaneous rms n	neasurements				
Currents (A)	Phases and neutral	11, 12, 13, IN	A/E	P/H	
	Average of phases	lavg = (11 + 12 + 13) / 3	A/E	P/H	-
	Highest current of the 3 phases and neutral	Imax of I1, I2, I3, IN	A/E	P/H	•
	Ground fault (Unit 6)	% lg (pick-up setting)	A/E	P/H	
	Current unbalance between phases	% lavg	- /E	P/H	-
Voltages (V)	Phase-to-phase	V12, V23, V31	-/E	P/H	
vollages (v)	Phase-to-neutral	V12, V23, V31 V1N, V2N, V3N	-/E	P/H	
	Average of phase-to-phase voltages	Vavg = (V12 + V23 + V31) / 3	- /E	P/H	-
	Average of phase-to-neutral voltages	Vavg = (V12 + V23 + V31)/3 Vavg = (V1N + V2N + V3N)/3	- /E	P/H	-
			-/E	P/H	-
	Ph-Ph and Ph-N voltage unbalance	% Vavg and % Vavg	-/E		-
	Phase sequence	<u>1-2-3, 1-3-2</u> f		P/H P/H	•
Frequency (Hz)	Power system		-/-		•
Power	Active (kW)	P, total	- /E	P/H	•
		P, per phase	- /E	P/H	• (2)
	Reactive (kVAR)	Q, total	- /E	P/H	
		Q, per phase	-/-	P/H	• (2)
	Apparent (kVA)	S, total	- /E	P/H	
		S, per phase	-/-	P/H	• (2)
	Power Factor	PF, total	- /E	P/H	
	-	PF, per phase	-/-	P/H	• (2)
	Cos.ø	Cos.ø, total	-/-	P/H	• (2)
		Cos.ø, per phase	-/-	P/H	• (2)
Maximeters / minime			-		
	Associated with instantaneous rms	Reset via FDM121 display unit and Intelligent	A/E	P/H	
	measurements	control unit keypad			-
Energy metering					
Energy	Active (kW), reactive (kVARh), apparent (kVAh)	Total since last reset	- /E	P/H	•
Demand and maxim	um demand values				
Demand current (A)	Phases and neutral	Present value on the selected window	- /E	P/H	•
()		Maximum demand since last reset	- /E	P/H	• (2)
Demand power	Active (kWh), reactive (kVAR),	Present value on the selected window	- /E	P/H	•
	apparent (kVA)	Maximum demand since last reset	- /E	P/H	• (2)
Calculation window	Sliding, fixed or com-synchronised	Adjustable from 5 to 60 minutes in 1 minute	- /E	P/H	_
	Shung, fixed of com-synchronised	steps (1)	-/E	F/11	-
Power quality					
Total harmonic	Of voltage with respect to rms value	THDU, THDV of the Ph-Ph and Ph-N voltage	-/-	Н	
distortion (%)	Of current with respect to rms value	THDI of the phase current	-/-	H	

Operating assistance

Histories.....

- Trip indications in clear text in a number of user-selectable languages.
- Time-stamping: date and time of trip.

Maintenance indicators

Intelligent control unit have indicators for, among others, the number of operating cycles, contact wear P/H, load profile and operating times (operating hours counter) of the DW circuit breaker.

It is possible to assign an alarm to the operating cycle counter to plan maintenance.

The various indicators can be used together with the trip histories to analyse the level of stresses the device has been subjected to.

Management of installed devices

Each circuit breaker equipped with a COM option (BCM ULP) can be identified via the communication system:

- serial number
- firmware version
- hardware version
- device name assigned by the user.

This information together with the previously described indications provides a clear view of the installed devices.

	Unit A/E/P/H operating assistance functions				Display			
			A/E	P/H	Unit LCD			
Operating assistance								
Trip histo	ory							
Trips	Cause of tripping	lr, Isd, Ii, Ig, I∆n	- /E P/H		•			
Maintena	nce indicato	rs						
Counter	Mechanical cycles	Assignable to an alarm	A/E	P/H	-			
	Electrical cycles	Assignable to an alarm	A/E	P/H	-			
	Hours	Total operating time (hours) ⁽¹⁾	A/E	P/H	-			
Indicator	Contact wear	%	-/-	P/H	-			
Load profile	Hours at different load levels	% of hours in four current ranges: 0-49 % In, 50-79 % In, 80-89 % In and ≤ 90 % In	A/E	P/H	-			

Note: (1) Also available via the communication system.

Additional technical characteristics

Contact wear

Each time DW opens, the Unit P/H trip unit measures the interrupted current and increments the contact-wear indicator as a function of the interrupted current, according to test results stored in memory.

Breaking under normal load conditions results in a very slight increment.

Circuit breaker load profile

Unit A/E/P/H calculates the load profile of the circuit breaker protecting a load circuit.

The profile indicates the percentage of the total operating time at four current levels (% of breaker In):

- ●0 to 49 % In
- 50 to 79 % In
- ●80 to 89 % In
- ●≥90 % In.

This information can be used to optimise use of the protected equipment or to plan ahead for extensions.

Navigation

Five buttons are used for intuitive and fast navigation. The "Context" button may be used to select the type of display (digital, bargraph, analogue). The user can select the display language (Chinese, English, French, German, Italian, Portuguese, Spanish, etc.).

Screens Main menu

When not in use, the screen is not backlit. Backlighting can be activated by pressing one of the buttons. It goes off after 3 minutes.

Fast access to essential information

• "Quick view" provides access to five screens that display a summary of essential operating information (I, U, f, P, E, THD, circuit breaker On / Off).

Access to detailed information

- "Metering" can be used to display the measurement data (I, U-V, f, P, Q, S, E, THD, PF) with the corresponding min/max values.
- Alarms displays the trip history.
- Services provides access to the operation counters, energy and maximeter reset function, maintenance indicators, identification of modules connected to the internal bus.

Communication component

External sensors

External sensor for earth-fault and neutral protection

The sensors, used with the 3P circuit breakers, are installed on the neutral conductor for:

• neutral protection (with Unit P and H)

• residual type earth-fault protection (with Unit A, E, P and H). The rating of the sensor (CT) must be compatible with the rating of the circuit breaker:

- DW08 to DW20: TC 400/2000
- DW25 to DW40: TC 1000/4000

• DW40b to DW63: TC 4000/6300.

For oversized neutral protection the sensor rating must be compatible with the measurement range: $1.6 \times \ln$ (available up to DW40).

Rectangular sensor for earth-leakage protection

The sensor is installed around the busbars (phases + neutral) to detect the zero-phase sequence current required for the earth-leakage protection. Rectangular sensors are available in two sizes.

Inside dimensions (mm)

- •280 x 115 up to 1600 A
- •470 x 160 up to 3200 A
- External sensor for source ground return protection (SGR)

The sensor is installed around the connection of the transformer neutral point to earth and connects to the control unit 6.0 via an MDGF module to provide the source ground return (SGR) protection.

Voltage measurement inputs

Voltage measurement inputs are required for power measurements (Control unit P or H) and for earth-leakage protection (Control unit 7...).

As standard, the control unit is supplied by internal voltage measurement inputs placed downstream of the pole for voltages between 220 and 690 V AC. On request, it is possible to replace the internal voltage measurement inputs by an external voltage input (PTE option) which enables the control unit to draw power directly from the distribution system upstream of the circuit breaker. An 3 m cable with ferrite comes with this PTE option.

Long-time rating plug

Four interchangeable plugs may be used to limit the long-time threshold setting range for higher accuracy.

The time delay settings indicated on the plugs are for an overload of 6 Ir (for further details, see the characteristics on page 20 and page 24).

As standard, control units are equipped with the 0.4 to 1 plug.

Setting ranges	s									
Standard	lr = ln	0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1
	х									
Low-setting	lr = ln	0.4	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.8
option	х									
High-setting	lr = ln	0.80	0.82	0.85	0.88	0.90	0.92	0.95	0.98	1
option	х									
Off plug		No lo	ong-ti	me pr	otect	ion (lı	r = In i	for Isc	l settir	ng)
Important: long t	Important: long time rating pluge must always be remayed before corruing out									

Important: long-time rating plugs must always be removed before carrying out insulation or dielectric withstand tests.

External 24 V DC power-supply module

The external power-supply module makes it possible to use the display even if the circuit breaker is open or not supplied (for the exact conditions of use, see the "electrical diagrams" part of this

catalogue).

This module powers both the control unit (100 mA) and the M2C and M6C programmable contacts (100 mA). If the COM communication option is used, the communication

bus requires 24 V DC power supply. With the control unit A/E, this module makes it possible to display currents of less than 20 % of In.

With the control unit P and H, it can be used to display fault currents after tripping.

Characteristics

- Power supply:
- 110/130, 200/240, 380/415 V AC, 50/60 Hz (+10 % -15 %)
- 24/30, 48/60, 100/125 V DC (+20 % -20 %).
- ●Output voltage: 24 V DC ±5 %, 1 A.
- Ripple < 1 %.
- Dielectric withstand : 3.5 kV rms between input/output, for 1 minute.
- Overvoltage category: as per IEC 60947-1 cat. 4.

External sensor (CT).

Rectangular sensor.

External sensor for source ground return protection.

Long time rating plug.

External 24 V DC power supply module.

Battery module

The battery module maintains display operation and communication with the supervisor if the power supply to the Intelligent control unit is interrupted. It is installed in series between the Intelligent control unit and the AD module.

Characteristics

- Battery run-time: 4 hours (approximately).
- Mounted on vertical backplate or symmetrical rail.

M2C, M6C programmable contacts

These contacts are optional equipment for the Unit E, P and H control units.

They are described with the indication contacts for the circuit breakers.

Intelligent control unit	t		Unit E	Units P, H
Characteristics			M2C	M2C/M6C
Minimum load			100 mA/24 V	100 mA/24 V
Breaking capacity (A)	V AC	240	5	5
p.f.: 0.7		380	3	3
	V DC	24	1.8	1.8
		48	1.5	1.5
		125	0.4	0.4
		250	0.15	0.15

M2C: 24 V DC power supplied by control unit (consumption 100 mA). M6C: external 24 V DC power supply required (consumption 100 mA).

Spare parts

Lead-seal covers

A lead-seal cover controls access to the adjustment dials. When the cover is closed:

- it is impossible to modify settings using the keypad unless the settings lockout pin on the cover is removed
- the test connector remains accessible
- the test button for the earth-fault and earth-leakage protection function remains accessible.

Characteristics

- Transparent cover for basic Unit and Unit A, E control units
- •Non-transparent cover for Intelligent control units P and H.

Spare battery

A battery supplies power to the LEDs identifying the tripping causes.

Battery service life is approximately ten years.

A test button on the front of the control unit is used to check the battery condition. The battery may be replaced on site when discharged.

Battery module

M₂C

M6C.

Lead-seal cover.

Communication

All the DW devices can be fitted with the communication function thanks to the COM option. DW uses the Modbus communications protocol for full compatibility with the supervision management systems. An external gateway is available for communication on other networks: Eco COM is limited to the transmission of metering data and status. It is not used to communicate controls.

For fixed devices, the COM option is made up of:

 a Modbus BCM ULP "device" communication module, installed behind the Intelligent control unit and supplied with its set of sensors (OF, SDE ,PF and CH micro switches) its kit for connection to XF and MX1 communicating voltage releases and its COM terminal block (inputs E1 to E6).

For drawout devices, the COM option is made up of:

- a Modbus BCM ULP "device" communication module, installed behind the Intelligent control unit and supplied with its set of sensors (OF, SDE, PF and CH micro switches) its kit for connection to XF and MX1 communicating voltage releases and its COM terminal block (inputs E1 to E6).
- a "chassis" communication module supplied separately with its set of sensors (CE, CD and CT contacts) Modbus CCM. Status indication by the COM option is independent of the device indication contacts. These contacts remain available for conventional uses.

Modbus BCM ULP "Device" communication module

This module is independent of the control unit. It receives and transmits information on the communication network. An infra-red link transmits data between the control unit and the communication module. Consumption: 30 mA, 24 V.

: Hard wire.

: Modbus.

- 1 Modbus BCM ULP "Device" communication module.
- 2 OF, SDE, PF and CH micro switches.
- 3 CE, CD and CT contacts.
- 4 XF and MX1 communicating voltage releases.
- 5 Intelligent control unit.
- 6 COM terminal block (E1 to E6).

XF and MX1 communicating voltage releases

The XF and MX1 communicating voltage releases are equipped for connection to the "device" communication module. The remote-tripping function (MX2 or MN) are independent of the communication option. They are not equipped for connection to the "device" communication module.

Modbus BCM ULP "device" communication module.

Four functional levels

The DW can be integrated into a Modbus communication environment. There are four possible functional levels that can be combined.

	Switch-disconnectors	Circuit bre	eaker		
Status indications					
ON/OFF (O/F)	•	А	Е	Р	н
Spring charged CH	•	A	E	Р	н
Ready to close	•	А	E	Р	Н
Fault-trip SDE	•	А	E	Р	Н
Connected / disconnected / test position CE/CD/CT (CCM only)	•	A	Е	Р	Н
Controls					
MX1 open	•	А	Е	Р	Н
XF close	•	А	Е	Р	Н
Measurements					
Instantaneous measurement information	•	А	E	Р	н
Averaged measurement information	•		Е	Р	Н
Maximeter / minimeter	•	А	Е	Р	н
Energy metering	•		E	Р	н
Demand for current and power	•		Е	Р	н
Power quality	•				н
Operating assistance					
Protection and alarm settings				Р	Н
Histories			E	Р	Н
Time stamped event tables				Р	н
Maintenance indicators		А	E	Р	Н

A: Unit with ammeter E: Unit "Energy" P: Unit "Power"

H: Unit "Harmonics"

Note: see the description of the Intelligent control units for further details on protection and alarms, measurements, waveform capture, histories, logs and maintenance indicators.

Communication Modbus bus

The Modbus RS 485 (RTU protocol) system is an open bus on which communicating Modbus devices are installed. All types of PLCs and microcomputers may be connected to the bus.

Addresses

The Modbus communication parameters (address, baud rate, parity) are entered using the keypad on the Units A, E, P, H. For a switch-disconnector, it is necessary to use the RSU (Remote Setting Utility) Intelligent control unit utility.

Modbus addresses

@xx	Circuit breaker manager	(1 to 47)
@xx + 50	Chassis manager	(51 to 97)
@xx + 200	Measurement manager	(201 to 247)
@xx + 100	Protection manager	(101 to 147)

The manager addresses are automatically derived from the circuit breaker address @xx entered via the Intelligent control unit (the default address is 47).

Number of devices

The maximum number of devices that may be connected to the Modbus bus depends on the type of device the baud rate (19200 is recommended), the volume of data exchanged and the desired response time. The RS 485 physical layer offers up to 32 connection points on the bus (1 master, 31 slaves).

A fixed device requires only one connection point (communication module on the device). A drawout device uses two connection points (communication modules on the device and on the chassis).

The number must never exceed 31 fixed devices or 15 drawout devices.

Length of bus

The maximum recommended length for the Modbus bus is 1200 meters.

Bus power source

A 24 V DC power supply is required (less than 20 % ripple, insulation class II).

DW uses the Modbus communication protocol, compatible with ION-E electrical engineering expert system software.

Two downloadable sofware (RSU, RCU) from <u>schneider-electric.com</u> facilitate implementation of communication functions.

Modbus

د.

Modbus is the most widely used communication protocol in industrial networks.

It operates in master-slave mode. The devices (slaves) communicate one after the other with a gateway (master).

DW, BX, PowerLogic and Sepam products all operate with this protocol. A Modbus network is generally implemented on an LV or MV switchboard scale. Depending on the data monitored and the desired refresh rate, a Modbus network connected to a gateway can serve 4 to 16 devices. For larger installations, a number of Modbus networks can be connected to an Ethernet network (TCP/IP/Modbus protocol) via their gateways (EGX).

Intelligent control unit utilities

- Two utilities, RSU and RCU, presented on the next page, are available to assist in starting up a communicating installation. Intended for DW, the software can be downloaded from the Schneider Electric internet site.
- The "Live update" function enables immediate updating to obtain the most recent upgrades. These easy-to-use utilities include starting assistance and on-line help. They are compatible with Microsoft Windows 2000, XP and Windows 7.

RSU configuration screen for a Intelligent control unit.

RCU mini-supervision screen for current measurements.

Gateway

·>

۰>

>

····

The gateway has two functions:

- access to the company intranet (Ethernet) by converting Modbus frames to the TCP/IP/Modbus protocol
- optional web-page server for the information from the devices.

Gateway

Two utilities, RSU and RCU, are available to assist in starting up a communicating installation. They can be downloaded from the Schneider Electric internet site and include a "Live update" function that enables immediate updating.

RSU (Remote Setting Utility)

This utility is used to set the protection functions and alarms for each DW device. After connection to the network and entry of the circuit-breaker Modbus address, the software automatically detects the type of trip unit installed. There are two possible operating modes.

Off-line with the software disconnected from the communication network

For each selected circuit breaker, the user can do the following.

Determine the protection settings

The settings are carried out on a screen that shows the front of the trip unit. The control unit setting dials, keypad and screen are simulated for easy use of all control unit setting functions.

Save and duplicate the protection settings

Each configuration created can be saved for subsequent device programming. It can also be duplicated and used as the basis for programming another circuit breaker.

On-line with the software connected to the network

Similarly, for each selected circuit breaker, the user can do the following.

Display the current settings

The software displays the trip unit and provides access to all settings.

View the corresponding protection curves

A graphic curve module in the software displays the protection curve corresponding to the settings. It is possible to lay a second curve over the first for discrimination studies.

Modify settings in a secure manner

• There are different levels of security:

- password: by default, it is the same for all devices, but can be differentiated for each device
- locking of the Modbus interface module which must be unlocked before the corresponding device can be set remotely
- maximum settings limited by the positions of the two dials on the trip unit.

These dials, set by the user, determine the maximum settings that can be made via the communication system.

- Settings are modified by:
 - either direct, on-line setting of the protection settings on the screen
 - or by loading the settings prepared in off-line mode. This is possible only if the positions of the dials allow the new settings.

All manual settings made subsequently on the device have priority.

Program alarms

- Up to 12 alarms can be linked to measurements or events.
- Two alarms are predefined and activated automatically:
 - Unit 5: overload (Ir)
- Unit 6: overload (Ir) and ground fault (Ig).
- Thresholds, priorities and time delays can be set for 10 other alarms. They may be selected from a list of 91 alarms.

Set the outputs of the SDx relays

This is required when the user wants to change the standard configuration and assign different signals to the 2 outputs of the SDx relay.

RCU (Remote Control Utility)

The RCU utility can be used to test communication for all the devices connected to the Modbus network. It is designed for use with DW, BX, Advantys OTB and Power Meter devices. It offers a number of functions.

Mini supervisor

- Display of I, U, f, P, E and THD measurements for each device, via navigation.
- Display of ON/OFF status.

Open and close commands for each device

A common or individual password must first be entered.

When all functions have been tested, this utility is replaced by the supervision software selected for the installation.

RSU: Control unit Remote Setting Utility.

RCU: Remote Control Utility for communication tests.

Wiring system ULP

The wiring system is designed for low-voltage power switchboards. Installation requires no tools or special skills. The prefabricated wiring ensures both data transmission (ModBus protocol) and 24 V DC power distribution for the communications modules on the Intelligent control units.

- BCM ULP: Breaker Communication Module with ULP port 1
- 2 3 Intelligent control unit Breaker ULP cord
- Modbus cable
- 4 5 6 7 8 Ethernet cable Front Display Module
- ULP line terminators
- CCM: Chassis Communication Module
- 9 Ethernet gateway10 External 24 V DC power supply module
- 11 Modbus interface 12 Stacking accessorie 13 ULP cable
- 0.3 m 0.6 m
- 14 BX cord

Connections

Three types of connection are available:

- vertical or horizontal rear connection
- front connection
- mixed connection.

The solutions presented are similar in principle for all DW fixed and drawout devices.

Rear connection

Horizontal

Vertical

Simply turn a horizontal rear connector 90° to make it a vertical connector.

For the 6300 A circuit breaker, only vertical connection is available.

Front connection

Front connection is available for DW fixed and drawout versions up to 3200 A.

Mixed connection

Note: DW circuit breakers can be connected indifferently with bare-copper, tinned-copper and tinned-aluminium conductors, requiring no particular treatment.

Type of accessory DW08 to DW63					
1990 01 40003301 y	Fixed		Drawout		
	Front Rear		Front	Rear	
	connection	connection	connection	connection	
Interphase barriers					
Disconnectable front-connection adapter					
Safety shutters with padlocking			standard		
Shutter position indication and locking				A CONTRACTOR	

Note: (1) Except for the DW40 equipped with horizontal rear connections.

Mounting on a switchboard backplate using special brackets DW fixed front-connected circuit breakers can be installed on a backplate without any additional accessories.

DW circuit breakers require a set of special brackets.

Interphase barriers (option)

These barriers are flexible insulated partitions used to reinforce isolation of connection points in installations with busbars, whether insulated or not.

For DW devices (up to DW40), they are installed vertically between rear connection terminals.

They are not compatible with spreaders.

Disconnectable front-connection adapter (option) Mounted on a fixed front-connected device, the adapter

Mounted on a fixed front-connected device, the adapter simplifies replacement of a fixed device by enabling fast disconnection from the front.

Safety shutters (VO standard)

Mounted on the chassis, the safety shutters automatically block access to the disconnecting contact cluster when the device is in the disconnected or test positions (degree of protection IP 20) When the device is removed from its chassis, no live parts are accessible.

The shutter-locking system is made up of a moving block that can be padlocked (padlock not supplied). The block:

prevents connection of the device
locks the shutters in the closed position.

For DW08 to DW63

A support at the back of the chassis is used to store the blocks when they are not used:

- •2 blocks for DW08 to DW40
- •4 blocks for DW40b to DW63.

Shutter position indication and locking on front face

This option located on the chassis front plate indicates that the shutters are closed. It is possible to independently or separately padlock the two shutters using one to three padlocks (not supplied).

Locking

Pushbutton locking VBP

The transparent cover blocks access to the pushbuttons used to open and close the device.

It is possible to independently lock the opening button and the closing button.

The locking device is often combined with a remote operating mechanism.

The pushbuttons may be locked using either:

- three padlocks (not supplied)
- lead seal
- two screws.

Access to pushbuttons protected by transparent cover.

Device locking in the OFF position VCPO by padlocks, VSPO by keylocks

The circuit breaker is locked in the OFF position by physically maintaining the opening pushbutton pressed down:

• using padlocks (one to three padlocks, not supplied), shackle diameter: 5 to 8 mm

• using keylocks (one or two different keylocks, supplied).

Keys may be removed only when locking is effective (Profalux or Ronis type locks).

The keylocks are available in any of the following configurations: • one keylock

- one keylock mounted on the device + one identical keylock
- supplied separately for interlocking with another device
- two different key locks for double locking.

Profalux and Ronis keylocks are compatible with each other. A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

Accessory-compatibility

For DW: 3 padlocks and/or 2 keylocks.

Pushbutton locking using a padlock.

OFF position locking using a padlock.

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.

For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker.

With this interlock installed, the source changeover function cannot be implemented.

This option is identical for fixed and drawout versions.

- Reset button for mechanical trip indication.
- 2 OFF pushbutton.
- 3 OFF position lock.
- 4 Electrical closing pushbutton.5 ON pushbutton.
- 5 ON pushbutton.6 Springs charged indication.
- 7 Pushbutton locking.
- 8 Contact position indication.
- Operation counter.

OFF position locking using a keylock.

"Disconnected" position locking by padlocks (standard) or keylocks VSPD (option)

Mounted on the chassis and accessible with the door closed, these devices lock the circuit breaker in the "disconnected" position in two manners:

- using padlocks (standard), up to three padlocks (not supplied)
- using keylocks (optional), one or two different keylocks are available.

Profalux and Ronis keylocks are available in different options: • one keylock

- two different keylocks for double locking
- one (or two) keylocks mounted on the device + one (or two) identical keylocks supplied separately for interlocking with another device.

A locking kit (without locks) is available for installation of one or two keylocks (Ronis, Profalux, Kirk or Castell).

"Disconnected" position locking by padlocks.

"Disconnected" position locking by keylocks.

"Connected", "disconnected" and "test" position locking

The "connected", "disconnected" and "test" positions are shown by an indicator andc are mechanically indexed. The exact position is obtained when the racking handle blocks. A release button is used to free it.

As standard, the circuit breaker can be locked only in "disconnected position". On request, the locking system may be modified to lock the circuit breaker in any of the three positions: "connected", "disconnected" or "test".

Door interlock catch VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position. It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Door interlock.

Racking interlock VPOC This device prevents insertion of the racking handle when the cubicle door is open.

Racking interlock between crank and OFF pushbutton IBPO

This option makes it necessary to press the OFF pushbutton in order to insert the racking handle and holds the device open until the handle is removed.

Racking interlock.

Automatic spring discharge before breaker removal DAE This option discharges the springs before the breaker is removed from the chassis.

Mismatch protection VDC

Mismatch protection ensures that a circuit breaker is installed only in a chassis with compatible characteristics. It is made up of two parts (one on the chassis and one on the circuit breaker) offering twenty different combinations that the user may select.

Mismatch protection

- 1 Mismatch protection.
- 2 Door interlock.
- 3 Racking interlock.
- 4 Keylock locking.
- 5 Padlock locking.
- 6 Position indicator.
- 7 Chassis front plate (accessible with cubicle door closed).
- 8 Racking-handle entry.
- 9 Reset button.
- 10 Racking-handle storage.

Indication contacts

Indication contacts are available:

- ${\ensuremath{\bullet}}$ in the standard version for relay applications
- in a low-level version for control of PLCs and electronic circuits.

M2C and M6C contacts may be programmed via the Intelligent control units E, P and H.

ON/OFF indication contacts OF

Two types of contacts indicate the ON or OFF position of the circuit breaker:

• rotary type changeover contacts directly driven by the mechanism for DW. These contacts trip when the minimum isolation distance between the main circuit-breaker contacts is reached.

OF				DW
Supplied as standard				4
Maximum number				12
Breaking capacity (A)	Standard			Minimum load:
p.f.: 0.3				100 mA/24 V
AC12/DC12		V AC	240/380	10/6 (1)
			480	10/6 (1)
			690	6
		V DC	24/48	10/6 (1)
			125	10/6 (1)
			250	3
	Low-level			Minimum load:
				2 mA/15 V
		V AC	24/48	6
			240	6
			380	3
		V DC	24/48	6
			125	6
			250	3

Note: (1) Standard contacts: 10 A; optional contacts: 6 A.

"Fault-trip" indication contacts SDE

Circuit-breaker tripping due to a fault is signalled by:

• a red mechanical fault indicator (reset)

●one changeover contact SDE.

Following tripping, the mechanical indicator must be reset before the circuit breaker may be closed. One SDE is supplied as standard. An optimal SDE may be added.

This latter is incompatible with the electrical reset after fault-trip option (RES).

SDE				DW
Supplied as standard				1
Maximum number				2
Breaking capacity (A)	Standard			Minimum load:
p.f.: 0.3				100 mA/24 V
AC12/DC12		V AC	240/380	5
			480	5
			690	3
		V DC	24/48	3
			125	0.3
			250	0.15
	Low-level			Minimum load:
				2 mA/15 V
		V AC	24/48	3
			240	3
			380	3
		V DC	24/48	3
			125	0.3
			250	0.15
Combined "connec	ted/close	d" con	tacts EF	

The contact combines the "device connected" and the "device closed" information to produce the "circuit closed" information. Supplied as an option for DW, it is mounted in place of the connector of an additional OF contact.

EF				DW
Maximum number				8
Breaking capacity (A)	Standard			Minimum load:
p.f.: 0.3				100 mA/24 V
AC12/DC12		V AC	240/380	6
			480	6
			690	6
		V DC	24/48	2.5
			125	0.8
			250	0.3
	Low-level			Minimum load:
				2 mA/15 V
		V AC	24/48	5
			240	5
			380	5
		V DC	24/48	2.5
			125	0.8
			250	0.3

ON/OFF indication contacts (OF) (rotary type).

Additional "fault-trip" indication contacts (SDE)

Combined contacts.

"Connected", "disconnected" and "test" position carriage switches

Three series of optional auxiliary contacts are available for the chassis:

- •changeover contacts to indicate the "connected" position CE
- changeover contacts to indicate the "disconnected" position CD. This position is indicated when the required clearance for isolation of the power and auxiliary circuits is reached
- changeover contacts to indicate the "test" position CT. In this position, the power circuits are disconnected and the auxiliary circuits are connected.

Additional actuators

A set of additional actuators may be installed on the chassis to change the functions of the carriage switches.

			DW				
Contacts			CE/	CD/	СТ		
Maximum number	Standard		3	3	3		
	with addition	onal	9	0	0		
	actuators		6	3	0		
			6	0	3		
			3	6	Õ		
Breaking capacity (A)	Standard				n load: 1	100 mA/24	4 V
p.f.: 0.3	V AC	240	8				
AC12/DC12		380	8				
		480	8				
		690	6				
	V DC	24/48	2.5				
		125	0.8				
		250	0.3				
	Low-level		Min	imuı	n load: 2	2 mA/15 V	·
	V AC	24/48	5				
		240	5				
		380	5				
	V DC	24/48	2.5				
		125	0.8				
		250	0.3				

CE, CD and CT "connected/disconnected/test" position carriage switches.

M2C / M6C programmable contacts

These contacts, used with the Intelligent control units E, P and H, may be programmed via the control unit keypad or via a supervisory station with the COM communication option. They require an external power supply module.

The M2C (two contacts) and M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Unit P control unit or remotely using the COM option (BCM ULP).

Intelligent control uni	t		Type E	Types P, H	
Characteristics			M2C	M2C / M6C	
Minimum load			100 mA/24 V	100 mA/24 V	
Breaking capacity (A)	V AC	240	5	5	
p.f.: 0.7		380	3	3	
•	V DC	24	1.8	1.8	
		48	1.5	1.5	
		125	0.4	0.4	
		250	0.15	0.15	
7 8 M2C: 24 V DC M6C: external 24 V DC power supply required (consumption 100 mA).					

M2C programmable contacts: circuit-breaker internal relay with two contacts. M6C programmable contacts: circuit-breaker external relay with six independent changeover contacts controlled from the circuit breaker via a three-wire connection. (maximum length is 10 meters).

Remote operation

Two solutions are available for remote operation of DW devices: • a point-to-point solution

• a bus solution with the COM communication option.

The remote ON / OFF function is used to remotely open and close the circuit breaker. It is made up of:

- an electric motor MCH equipped with a "springs charged" limit switch contact CH
- two voltage releases:
- a closing release XF
- an opening release MX.

Optionally, other functions may be added:

- a "ready to close" contact PF
- an electrical closing pushbutton BPFE
- remote RES following a fault.
- A remote-operation function is generally combined with:
- device ON / OFF indication OF
- "fault-trip" indication SDE.

Wiring diagram of a point-to-point remote ON / OFF function

Wiring diagram of a bus-type remote ON / OFF function

Note: an opening order always takes priority over a closing order. If opening and closing orders occur simultaneously, the mechanism

If opening and closing orders occur simultaneously, the mechanism discharges without any movement of the main contacts. The circuit breaker remains in the open position (OFF).

In the event of maintained opening and closing orders, the standard mechanism provides an anti-pumping function by blocking the main contacts in open position.

contacts in open position. Anti-pumping function. After fault tripping or intentional opening using the manual or electrical controls, the closing order must first be discontinued, then reactivated to close the circuit breaker.

When the automatic reset after fault trip (RAR) option is installed, to avoid pumping following a fault trip, the automatic control system must take into account the information supplied by the circuit breaker before issuing a new closing order or blocking the circuit breaker in the open position (information on the type of fault, e.g. overload, short-time fault, earth fault, earth leakage, short-circuit, etc.).

Note: MX communicating releases are of the impulse type only and cannot be used to lock a circuit breaker in OFF position. For locking in OFF position, use the remote tripping function (2nd MX or MN).

When MX or XF communicating releases are used, the third wire (C3, A3) must be connected even if the communication module is not installed. When the control voltage (C3-C1 or A3-A1) is applied to the MX or XF releases, it is necessary to wait 1.5 seconds before issuing an order. Consequently, it is advised to use standard MX or XF releases for applications such as source-changeover systems.

Electric motor MCH

The electric motor automatically charges and recharges the spring mechanism when the circuit breaker is closed. Instantaneous reclosing of the breaker is thus possible following opening. The spring-mechanism charging handle is used only as a backup if auxiliary power is absent. The electric motor MCH is equipped as standard with a limit switch contact CH that signals the "charged" position of the mechanism (springs charged).

Characteristics

Characteristic	75	
Power supply	V AC 50/60 Hz	48/60 - 100/130 - 200/240 - 277-
		380/415 - 400/440 - 480
	V DC	24/30 - 48/60 - 100/125 - 200/250
Operating three	shold	0.85 to 1.1 Un
Consumption (VA or W)	180
Motor overcurr	ent	2 to 3 In for 0.1 s
Charging time		maximum 4 s
Operating freq	uency	maximum 3 cycles per minute
CH contact	-	10 A at 240 V

Voltage releases XF and MX

Their supply can be maintained or automatically disconnected.

Closing release XF

The XF release remotely closes the circuit breaker if the spring mechanism is charged.

Opening release MX

The MX release instantaneously opens the circuit breaker when energised. It locks the circuit breaker in OFF position if the order is maintained (except for MX "communicating" releases). Note: whether the operating order is maintened or

automatically disconnected (pulse-type), XF or MX "communicating" releases ("bus" solution with "COM" communication option) always have an impulse-type action (see diagram).

Characteristic	s	XF	МХ		
Power supply	V AC 50/60 Hz	24 - 48 - 100/130 - 200/250 - 277 -			
		380/480			
	V DC	12 - 24/30 - 48/60	- 100/130 - 200/250		
Operating three		0.85 to 1.1 Un	0.7 to 1.1 Un		
Consumption (VA or W)	Hold: 4.5	Hold: 4.5		
		Pick-up:	Pick-up:		
		200 (200 ms)	200 (200 ms)		
Circuit breaker	response time	70 ms ±10	50 ms ±10		
at Un		(≤ 4000 A)			
		80 ms ±10			
		(> 4000 A)			

"Ready to close" contact PF

The "ready to close" position of the circuit breaker is indicated by a mechanical indicator and a PF changeover contact. This signal indicates that all the following are valid:

• the circuit breaker is in the OFF position

• the spring mechanism is charged

- a maintained opening order is not present:
 - MX energised
 - fault trip
 - remote tripping second MX or MN
 - · device not completely racked in
 - device locked in OFF position
 - · device interlocked with a second device.

Characteristics				DW
Maximum number				1
Breaking capacity (A)	Standard			Minimum load:
p.f.: 0.3				100 mA/24 V
AC12/DC12		V AC	240/380	5
			480	5
			690	3
		V DC	24/48	3
			125	0.3
			250	0.15
	Low-level			Minimum load:
				2 mA/15 V
		V AC	24/48	3
			240	3
			380	3
		V DC	24/48	3
			125	0.3
			250	0.15

Electric motor MCH.

XF and MX voltage releases.

"Ready to close' contacts PF.

Electrical closing pushbutton BPFE

Located on the front panel, this pushbutton carries out electrical closing of the circuit breaker. It is generally associated with the transparent cover that protects access to the closing pushbutton.

Electrical closing via the BPFE pushbutton takes into account all the safety functions that are part of the control/monitoring system of the installation.

The BPFE connects to the closing release (XF com) in place of the COM module.

The COM module is incompatible with this option.

Different types of voltage exist and the XF electromagnet is compulsary if the BPFE option is selected.

Electrical closing pushbutton BPFE.

Remote reset after fault trip

Electrical reset after fault trip RES

Following tripping, this function resets the "fault trip" indication contacts SDE and the mechanical indicator and enables circuit breaker closing.

Power supply: 110/130 V AC and 200/240 V AC.

The use of XF closing release is compulsory with this option. The additional "Fault Trip" indication contact SDE2 is not compatible with RES.

Automatic reset after fault trip RAR

Following tripping, a reset of the mechanical indicator (reset button) is no longer required to enable circuit-breaker closing. The mechanical (reset button) and electrical SDE indications remain in fault position until the reset button is pressed. The use of XF closing release is compulsory with this option.

This function opens the circuit breaker via an electrical order. It is made up of:

- a shunt release second MX
- or an undervoltage release MN

• or a delayed undervoltage release MNR: MN + delay unit. These releases (2nd MX or MN) cannot be operated by the communication bus.

The delay unit, installed outside the circuit breaker, may be disabled by an emergency OFF button to obtain instantaneous opening of the circuit breaker.

Wiring diagram for the remote-tripping function

Voltage releases second MX

When energised, the MX voltage release instantaneously opens the circuit breaker. A continuous supply of power to the second MX locks the circuit breaker in the OFF position.

Characteristics

Power supply VAC 50/60Hz	24 - 48 - 100/130 - 200/250 - 277-
	380/480
V DC	12 - 24/30 - 48/60 - 100/130 - 200/250
Operating threshold	0.7 to 1.1 Un
Permanent locking function	0.85 to 1.1 Un
Consumption (VA or W)	Pick-up: 200 (80 ms) Hold: 4.5
Circuit breaker response time	50 ms ±10
at Un	

Instantaneous voltage releases MN

The MN release instantaneously opens the circuit breaker when its supply voltage drops to a value between 35 % and 70 % of its rated voltage. If there is no supply on the release, it is impossible to close the circuit breaker, either manually or electrically. Any attempt to close the circuit breaker has no effect on the main contacts. Circuit-breaker closing is enabled again when the supply voltage of the release returns to 85 % of its rated value.

Characteristics

S	
V AC 50/60 Hz	24 - 48 - 100/130 - 200/250 - 380/480
V DC	24/30 - 48/60 - 100/130 - 200/250
Opening	0.35 to 0.7 Un
Closing	0.85 Un
/A or W)	Pick-up: 200 (200 ms) Hold: 4.5
n with delay	Pick-up:200 (200 ms) Hold: 4.5
esponse time	90 ms ±5
	V AC 50/60 Hz V DC Opening Closing /A or W) n with delay

MN delay units

To eliminate circuit-breaker nuisance tripping during short voltage dips, operation of the MN release can be delayed. This function is achieved by adding an external delay unit in the MN voltage-release circuit. Two versions are available, adjustable and non-adjustable.

Characteristics		
Power supply	Non-adjustab	le 100/130 - 200/250
V AC 50-60 Hz /DC	Adjustable	48/60 - 100/130
	-	- 200/250 - 380/480
Operating threshold	Opening	0.35 to 0.7 Un
	Closing	0.85
		Un
Delay unit consumption	Pick-up: 200 (200 ms) Hold: 4.5
Circuit breaker response time	Non-adjustab	le 0.25 s
at Un	Adjustable	0.5 s - 0.9 s - 1.5 s - 3
	-	S

MX or MN voltage release.

Accessories

Auxiliary terminal shield CB

Optional equipment mounted on the chassis, the shield prevents access to the terminal block of the electrical auxiliaries.

Operation counter CDM

The operation counter sums the number of operating cycles and is visible on the front panel. It is compatible with manual and electrical control functions.

This option is compulsory for all the source-changeover systems.

Escutcheon CDP

Optional equipment mounted on the door of the cubicle, the escutcheon increases the degree of protection to IP 40 (circuit breaker installed free standing: IP30). It is available in fixed and drawout versions.

Blanking plate OP for escutcheon

Used with the escutcheon, this option closes off the door cut-out of a cubicle not yet equipped with a device. It may be used with the escutcheon for both fixed and drawout devices.

Escutcheon CDP with blanking plate.

Transparent cover CCP for escutcheon

Optional equipment mounted on the escutcheon, the cover is hinged and secured by a screw. It increases the degree of protection to IP54, IK10. It adapts to drawout devices.

Transparent cover CCP for escutcheon.

Grounding kit KMT

This option allows the grounding of the breaker mechanism while the front cover is removed. The grounding is made via the chassis for the drawout version and via the fixation side plate for the fixed version.

Grounding kit KMT.

Manual source-changeover system

This is the most simple type. It is controlled manually by an operator and consequently the time required to switch from the normal to the replacement source can vary.

A manual source-changeover system is made up of two or three mechanically interlocked manually-operated circuit breakers or switch-disconnectors.

The interlocks prevent any paralleling, even transient, of the two sources.

Commercial and service sector:

- operating rooms in hospitals
 safety systems for tall buildings
- computer rooms (banks, insurance companies, etc.) lighting systems in shopping centres...

Infrastructures:

- port and railway installations
- runway lighting systems
 control systems on military sites...

Industry:

- assembly lines • engine rooms on ships
- critical auxiliaries in thermal power stations...

Interlocking of two DW devices using connecting rods

The two devices must be mounted one above the other (either 2 fixed or 2 withdrawable/drawout devices). Combinations are possible between DW devices.

Installation

This function requires:

- an adaptation fixture on the right side of each circuit breaker or switch-disconnector
- a set of connecting rods with no-slip adjustments.

The adaptation fixtures, connecting rods and circuit breakers or switch-disconnectors are supplied separately, ready for assembly by the customer.

The maximum vertical distance between the fixing planes is 900 mm

Interlocking of two DW circuit breakers using connecting rods.

Electrical interlocking is used with the mechanical interlocking system.

An automatic controller may be added to take into account information from the distribution system.

Moreover, the relays controlling the "normal" and "replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

Electrical interlocking is carried out by an electrical control device.

For DW, this function can be implemented in one of two ways: • using the IVE unit

• by an electrician in accordance with the chapter "electrical diagrams" of the catalogue "source-changeover systems".

Characteristics of the IVE unit

- External connection terminal block:
 - inputs: circuit breaker control signals
 - outputs: status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers.
- 2 connectors for the two "Normal" and "Replacement" source circuit breakers:
 - inputs:
 - status of the OF contacts on each circuit breaker (ON or OFF)
 - status of the SDE contacts on the "Normal" and "Replacement" source circuit breakers
 - Replacement source circuit breakers
 - outputs: power supply for operating mechanisms.
- Control voltage:
 - 24 to 250 V DC
 - 48 to 415 V 50/60 Hz 440 V 60 Hz.

The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit.

Types of mechanical interlocking Possible combinations | Typical electrical diagrams 2 devices QN QR • electrical interlocking with lockout after fault: · permanent replacement source (without IVE) 0 0 Ťοr ΩN • with EPO by MX (without IVE) 1 Λ • with EPO by MN (without IVE) 0 permanent replacement source (with IVE) • with EPO by MX (with IVE) • with EPO by MN (with IVE) • automatic control without lockout after fault: · permanent replacement source (without IVE) engine generator set (without IVE) • automatic control with lockout after fault: • permanent replacement source (with IVE) · engine generator set (with IVE) BA/UA controller (with IVE)

MCH gear motor MX or MN opening

- MX or MN opening release
 XF closing release
- PF "ready to close" contact

Necessary equipment

CDM mechanical operation counter

• a remote-operation system made up of:

- an available OF contact
- one to three CE connected-position contacts (carriage switches) on drawout circuit breakers (depending on the installation).

For DW, each circuit breaker must be equipped with:

"Lockout after fault" option. This option makes it necessary to manually reset the device following fault tripping.

DW circuit breakers have been tested for operation in industrial atmospheres. It is recommended that the equipment be cooled or heated to the proper operating temperature and kept free of excessive vibration and dust.

Ambient temperature

DW devices can operate under the following temperature conditions:

- the electrical and mechanical characteristics are stipulated for an ambient temperature of -25 °C to +70 °C
- circuit-breaker closing is guaranteed down to -35 °C by manual operation (push button).

Storage conditions are as follows:

- -40 to +85 °C for a DW device without its control unit
- -25 °C to +85 °C for the control unit.

Extreme atmospheric conditions

DW devices have successfully passed the tests defined by the following standards for extreme atmospheric conditions:

- IEC 60068-2-1: dry cold at -55 °C
- ●IEC 60068-2-2: dry heat at +85 °C
- IEC 60068-2-30: damp heat (temperature +55 °C, relative humidity 95 %)
- IEC 60068-2-52 level 2: salt mist.

DW devices can operate in the industrial environments defined by standard IEC 60947 (pollution degree up to 4).

It is nonetheless advised to check that the devices are installed in suitably cooled switchboards without excessive dust.

Vibrations

DW devices have successfully passed testing in compliance with IEC 60068-2-6 for the following vibration levels: ●2 to 13.2 Hz: amplitude +/- 1 mm

● 13.2 to 100 Hz: constant acceleration 0.7 g. Vibration testing to these levels is required by merchant marine inspection organisations (Veritas, Lloyd's, etc).

Some applications have vibration profiles outside of this standard and require special attention during application design, installation, and use. Excessive vibration may cause unexpected tripping, damage to connections or to other mechanical parts. Please refer to the DW maintenance guide (causes of accelerated ageing / operating conditions / vibrations) for additional information.

Examples of applications with high vibration profiles could include:

- wind turbines
- power frequency converters that are installed in the same switchboard or close proximity to the DW circuit breaker
- emergency generators
- high vibration marine applications such as thrusters, anchor positioning systems, etc.

Altitude

At altitudes higher than 2000 metres, the modifications in the ambient air (electrical resistance, cooling capacity) lower the following characteristics as follows:

Altitude (m)	2000	3000	4000	5000
Impulse withstand voltage	12	11	10	8
Uimp (kV)				
Rated insulation voltage (Ui)	1000	900	780	700
Maximum rated operationnal	690	690	630	560
voltage 50/60 Hz Ue (V)	1000	890	795	700
Rated current 40 °C	1 x ln	0.99 x In	0.96 x In	0.94 x In

Note: intermediate values may be obtained by interpolation.

Electromagnetic disturbances

DW devices are protected against:

- overvoltages caused by devices that generate electromagnetic disturbances
- overvoltages caused by atmospheric disturbances or by a distribution-system outage (e.g. failure of a lighting system)
- devices emitting radio waves (radios, walkie-talkies, radar, etc.)
- electrostatic discharges produced by users.

DW devices have successfully passed the electromagneticcompatibility tests (EMC) defined by the following international standards:

- ●IEC 60947-2, appendix F
- IEC 60947-2, appendix B (trip units with earth-leakage function).
- The above tests guarantee that:
- no nuisance tripping occurs
- tripping times are respected.

Possible positions

Power supply

DW devices can be supplied either from the top or from the bottom without reduction in performance, in order to facilitate connection when installed in a switchboard.

Mounting the circuit breaker

It is important to distribute the weight of the device uniformily over a rigid mounting surface such as rails or a base plate.

This mounting plane should be perfectly flat (tolerance on support flatness: 2 mm).

This eliminates any risk of deformation which could interfere with correct operation

of the circuit breaker.

DW devices can also be mounted on a vertical plane using the special brackets.

Mounting on rails.

Mounting with vertical brackets.

Partitions

Sufficient openings must be provided in partitions to ensure good air circulation around the circuit breaker; Any partition between upstream and downstream connections of the device must be made of non-magnetic material.

For high currents, of 2500 Å and upwards, the metal supports or barriers in the immediate vicinity of a conductor must be made of non-magnetic material **A**.

Metal barriers through which a conductor passes must not form a magnetic loop.

A : non magnetic material.

Busbars

The mechanical connection must be exclude the possibility of formation of a magnetic loop around a conductor.

Interphase barrier

If the insulation distance between phases is not sufficient (\leq 14 mm), it is advised to install phase barriers (taking into account the safety clearances).

Door interlock VPEC

Mounted on the right or left-hand side of the chassis, this device inhibits opening of the cubicle door when the circuit breaker is in "connected" or "test" position.

It the breaker is put in the "connected" position with the door open, the door may be closed without having to disconnect the circuit breaker.

Dimensions (mm)

Туре	(1)	(2)	
DW08-40 (3P)	215	215	
DW08-40 (4P)	330	215	
DW40b-63 (3P)	660	215	
DW40b-63 (4P)	775	215	

Breaker in "connected" or "test" position Door cannot be opened

Breaker in "disconnected" position Door can be opened

Cable-type door interlock IPA

This option prevents door opening when the circuit breaker is closed and prevents circuit breaker closing when the door is open.

For this, a special plate associated with a lock and a cable is mounted on the right side of the circuit breaker.

With this interlock installed, the source changeover function cannot be implemented.

Note: the door interlock can either be mounted on the right side or the left side of the breaker.

Wiring of voltage releases

During pick-up, the power consumed is approximately 150 to 200 VA. For low control voltages (12, 24, 48 V), maximum cable lengths are imposed by the voltage and the cross-sectional area of cables.

		12 V		24 V		48 V	
		2.5 mm ²	1.5 mm ²	2.5 mm ²	1.5 mm ²	2.5 mm ²	1.5 mm ²
MN	U source 100 %	-	-	58	35	280	165
	U source 85 %	-	-	16	10	75	45
MX-XF	U source 100 %	21	12	115	70	550	330
	U source 85 %	10	6	75	44	350	210

Recommended maximum cable lengths (meter).

Note: the indicated length is that of each of the two wires.

24 V DC power-supply module

External 24 V DC power-supply module for Intelligent control unit (F1-, F2+)

- Do not connect the positive terminal (F2+) to earth.
- The negative terminal (F1-) can be connected to earth, except in IT systems.
- A number of Intelligent control units and M6C modules can be connected to the same 24 V DC power supply (the consumption of a Intelligent control unit or an M6C module is approximately 100 mA).
- Do not connect any devices other than a control unit or an M6C module if voltage > 480 V AC or in an environment with a high level of electromagnetic disturbance.
- The maximum length for each conductor is ten metres. For greater distances, it is advised to twist the supply wires together.
- The 24 V DC supply wires must cross the power cables perpendicularly. If this is difficult, it is advised to twist the supply wires together.
- The technical characteristics of the external 24 V DC power-supply module for Intelligent control units are indicated on page 34.

Communication bus

- Do not connect the positive terminal (E1) to earth.
- The negative terminal (E2) can be connected to earth.
- A number of "device" or "chassis" communication modules can be connected to the same 24 V DC power supply (the consumption of each module is approximately 30 mA).

Note: wiring of ZSI: it is recommended to use twisted shielded cable. The shield must be connected to earth at both ends.

Cables connections

If cables are used for the power connections, make sure that they do not apply excessive mechanical forces to the circuit breaker terminals.

For this, make the connections as follows:

- extend the circuit breaker terminals using short bars designed and installed according to the recommendations for bar-type power connections:
 - for a single cable, use solution **B** opposite
 - for multiple cables, use solution C opposite
- in all cases, follow the general rules for connections to busbars:
 - position the cable lugs before inserting the bolts
 - the cables should firmly secured to the framework E.

Busbars connections

The busbars should be suitably adjusted to ensure that the connection points are positioned on the terminals before the bolts are inserted ${\bf B}$.

The connections are held by the support which is solidly fixed to the framework of the switchboard, such that the circuit breaker terminals do not have to support its weight **C** (this support should be placed close to the terminals).

Electrodynamic stresses

The first busbar support or spacer shall be situated within a maximum distance from the connection point of the breaker (see table below). This distance must be respected so that the connection can withstand the electrodynamic stresses between phases in the event of a short circuit.

Maximum distance A connection and the the value of the pros	first bus	bar sup	port or s	pacer w	-	ect to
Isc (kA)	30	50	65	80	100	150
Distance A (mm)	350	300	250	150	150	150

Clamping

Correct clamping of busbars depends amongst other things, on the tightening torques used for the nuts and bolts. Overtightening may have the same consequences as undertightening.

For connecting busbars (Cu ETP-NFA51-100) to the circuit breaker, the tightening torques to be used are shown in the table below.

These values are for use with copper busbars and steel nuts and bolts, class 8.8. The same torques can be used with AGS-T52 quality aluminium bars (French standard NFA 02-104 or American National Standard H-35-1).

Examples

g torques		
Ø (mm)	Tightening torques	Tightening torques
Drilling	(Nm)	(Nm)
•	with grower or flat	with contact or
	washers	corrugatec washers
11	37.5	50
	Ø (mm)	Ø (mm) Tightening torques Drilling (Nm) with grower or flat washers

Terminal screw factory-tightened to 16 Nm. Breaker terminal. 1 2

- 2 3 4 5 Busbar. Bolt.
- Washer.

6 Nut.

Isolation distance

Dimensions (mm)

Ui	X min
600 V	8 mm
1000 V	14 mm

Busbar bending

When bending busbars maintain the radius indicated below (a smaller radius would cause cracks).

Dimensions (mm)

е	Radius of curvature r	
	Min	Recommended
5	5	7.5
10	15	18 to 20

Vertical rear connection DW08 to DW32, DW40b to DW50

Front connection DW08 to DW32

Top connection

Bottom connection

Basis of tables:

- maximum permissible busbars temperature: 100 °C
- Ti: temperature around the circuit breaker and its connection
- busbar material is unpainted copper.

Front or rear horizontal connection

ACB	Maximum	Ti : 40 °C		Ti : 50 °C		Ti : 60 °C	
	service current	No. of 5 mm	No. of 10 mm	No. of 5 mm	No. of 10 mm	No. of 5 mm	No. of 10 mm
		thick bars	thick bars	thick bars	thick bars	thick bars	thick bars
DW08	800	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.63 x 10
DW10	1000	3b.50 x 5	1b.63 x 10	3b.50 x 5	2b.50 x 10	3b.63 x 5	2b.50 x 10
DW12	1250	3b.50 x 5	2b.40 x 10	3b.50 x 5	2b.50 x 10	3b.63 x 5	2b.50 x 10
		2b.80 x 5	2b.40 x 10	2b.80 x 5			
DW16	1400	3b.63 x 5	2b.40 x 10	3b.63 x 5	2b.50 x 10	3b.80 x 5	2b.63 x 10
DW16	1600	3b.80 x 5	2b.63 x 10	3b.80 x 5	2b.63 x 10	3b.80 x 5	3b.50 x 10
DW20	1800	3b.80 x 5	2b.63 x 10	3b.80 x 5	2b.63 x 10	3b.100 x 5	2b.80 x 10
DW20	2000	3b.100 x 5	2b.80 x 10	3b.100 x 5	2b.80 x 10	3b.100 x 5	3b.63 x 10
DW25	2200	4b.100 x 5	2b.80 x 10	4b.100 x 5	2b.80 x 10	4b.100 x 5	2b.100 x 10
DW25	2500	4b.100 x 5	2b.100 x 10	4b.100 x 5	2b.100 x 10	4b.100 x 5	3b.80 x 10
DW32	2800	4b.100 x 5	3b.80 x 10	4b.100 x 5	3b.80 x 10	5b.100 x 5	3b.100 x 10
DW32	3000	5b.100 x 5	3b.80 x 10	6b.100 x 5	3b.100 x 10	8b.100 x 5	4b.80 x 10
DW32	3200	6b.100 x 5	3b.100 x 10	8b.100 x 5	3b.100 x 10		4b.100 x 10
DW40	3800		4b.100 x 10		5b.100 x 10		5b.100 x 10
DW40	4000		5b.100 x 10		5b.100 x 10		6b.100 x 10
DW50	4500		6b.100 x 10		6b.100 x 10		7b.100 x 10
DW50	5000		7b.100 x 10		7b.100 x 10		

Example

Conditions:

- drawout version
- horizontal busbars
- ●Ti:50 °C
- service current: 1800 A.

Solution:

For Ti = 50 °C, use an DW20 which can be connected with three 80 x 5 mm bars or two 63 x 10 mm bars.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Basis of tables:

- maximum permissible busbars temperature: 100 °C
- Ti: temperature around the circuit breaker and its connection
- busbar material is unpainted copper.

Rear vertical connection

ACB	Maximum	Ti : 40 °C		Ti : 50 °C		Ti : 60 °C	
	service current	No. of 5 mm	No. of 10 mm	No. of 5 mm	No. of 10 mm	No. of 5 mm	No. of 10 mm
		thick bars	thick bars	thick bars	thick bars	thick bars	thick bars
DW08	800	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.50 x 10
DW10	1000	2b.50 x 5	1b.50 x 10	2b.50 x 5	1b.50 x 10	2b.63 x 5	1b.63 x 10
DW12	1250	2b.63 x 5	1b.63 x 10	3b.50 x 5	2b.40 x 10	3b.50 x 5	2b.40 x 10
DW16	1400	2b.80 x 5	1b.80 x 10	2b.80 x 5	2b.50 x 10	3b.63 x 5	2b.50 x 10
DW16	1600	3b.63 x 5	2b.50 x 10	3b.63 x 5	2b.50 x 10	3b.80 x 5	2b.63 x 10
DW20	1800	2b.100 x 5	1b.80 x 10	2b.100 x 5	2b.50 x 10	3b.80 x 5	2b.63 x 10
DW20	2000	3b.100 x 5	2b.63 x 10	3b.100 x 5	2b.63 x 10	3b.100 x 5	2b.80 x 10
DW25	2200	3b.100 x 5	2b.63 x 10	3b.100 x 5	2b.63 x 10	3b.100 x 5	2b.80 x 10
DW25	2500	4b.100 x 5	2b.80 x 10	4b.100 x 5	2b.80 x 10	4b.100 x 5	3b.80 x 10
DW32	2800	4b.100 x 5	2b.100 x 10	4b.100 x 5	2b.100 x 10	4b.100 x 5	3b.80 x 10
DW32	3000	5b.100 x 5	3b.80 x 10	6b.100 x 5	3b.100 x 10	5b.100 x 5	4b.80 x 10
DW32	3200	6b.100 x 5	3b.100 x 10	6b.100 x 5	3b.100 x 10		4b.100 x 10
DW40	3800		4b.100 x 10		4b.100 x 10		4b.100 x 10
DW40	4000		4b.100 x 10		4b.100 x 10		4b.100 x 10
DW50	4500		5b.100 x 10		5b.100 x 10		6b.100 x 10
DW50	5000		5b.100 x 10		6b.100 x 10		7b.100 x 10
DW63	5700		7b.100 x 10		7b.100 x 10		8b.100 x 10
DW63	6300		8b.100 x 10		8b.100 x 10		

Example

Conditions:

- In the drawout version
- •vertical connections
- ●Ti: 40 °C
- service current: 1100 A.

Solution :

For Ti = 40 °C use an DW12 which can be connected with two 63×5 mm bars or with one 63×10 mm bar.

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test.

Temperature derating

The table below indicates the maximum current rating, for each connection type, as a function of Ti around the circuit breaker and the busbars.

Circuit breakers with mixed connections have the same derating as horizontally connected breakers. For Ti greater than 60 °C, consult us. Ti: temperature around the circuit breaker and its connection.

Version	Draw	out									Fixed									
Connection	Front	or rea	ar hori:	zonta		Rear	vertio	al			Front	or re	ar hor	izonta		Rear	vertic	al		
Temp.Ti	40	45	50	55	60	40	45	50	55	60	40	45	50	55	60	40	45	50	55	60
DW08 H1/H2	800					800					800					800				
DW10 H1/H2	1000					1000					1000					1000				
DW12 H1/H2	1250					1250					1250					1250				
DW16 H1/H2	1600					1600					1600					1600				
DW20 H1/H2	2000			1980	1890	2000					2000				1920	2000				
DW25 H1/H2	2500					2500					2500					2500				
DW32 H1/H2	3200		3100	3000	2900	3200					3200					3200				
DW40 H1/H2	4000		3900	3750	3650	4000				3850	4000			3900	3800	4000				
DW40b H1/H2	4000					4000					4000					4000				
DW50 H1/H2	5000					5000					5000					5000				
DW63 H1/H2	-	-	-	-	-	6300				6200	-	-	-	-	-	6300				

Power dissipation

Total power dissipation is the value measured at In, 50/60 Hz,

for a 3 pole or 4 pole breaker.

Version	Drawout	Fixed
	Power dissipation (Watts)	Power dissipation (Watts)
DW08 H1/H2	100	42
DW10 H1/H2	150	70
DW12 H1/H2	230	100
DW16 H1/H2	390	170
DW20H1/H2	470	250
DW25 H1/H2	600	260
DW32 H1/H2	670	420
DW40 H1/H2	900	650
DW40b H1/H2	550	390
DW50 H1/H2	950	660
DW63 H1/H2	1200	1050

Factors affecting switchboard design

The temperature around the circuit breaker and its connections:

This is used to define the type of circuit breaker to be used and its connection arrangement.

Vents at the top and bottom of the cubicles:

Vents considerably reduce the temperature inside the switchboard, but must be designed so as to respect the degree of protection provided by the enclosure. For weatherproof heavy-duty cubicles, a forced ventilation system may be required.

The heat dissipated by the devices installed in the switchboard:

This is the heat dissipated by the circuit breakers under normal conditions (service current).

The size of the enclosure:

This determines the volume for cooling calculations.

Switchboard installation mode:

Free-standing, against a wall, etc.

Horizontal partitions:

Partitions can obstruct air circulation within the enclosure.

Basis of tables

- switchboard dimensions
- number of circuit-breakers installed
- type of breaker connections
- drawout versions
- ambient temperature outside of the switchboard: T_a (IEC 60439-1).

DW08-10 H1/H2 (switchboard 2300 x 800 x 900) - area of outlet vents: 350 cm²

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test. The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Type DW12 H1/H2 DW16 H1/H2 Switchboard composition 4 3 2 1 **Connection type** \equiv \equiv **Busbar dimensions (mm)** 3b. 63 x 5 3b. 80 x 5 3b. 50 x 5 3b. 63 x 5 Ventilated switchboard (IP31) 4 3 2 1250 (1) T₀ = 35 °C 1250 1250 1600 **1** 1250 1600 1250 1250 1600 1250 1600 4 3 1250 T_a = 45 °C 2 1250 1250 1600 **1** 1250 1250 1250 1250 1600 1600 1600 4 3 1250 T₂ = 55 °C 2 1250 1470 1250 **1** 1250 1250 1250 1250 1520 1600 1600 Note: (1) Area of outlet vents: 350 cm². (2) Area of inlet vents: 350 cm². Non ventilated switchboard (= IP54) 4

DW12-16 H1/H2 (switchboard 2300 x 800 x 900) - area of outlet vents: 350 cm²

_800

	3			1250			
T _a = 35 °C	2		1250	1250			1600
u	1 1250	1250	1250	1250	1600	1600	1600
	4						
T 45 00	3			1250			
T _a = 45 °C	2		1250	1250			1500
	1 1250	1250	1250	1250	1500	1600	1600
	4						
T _a = 55 °C	3			1250			
	2		1250	1250			1400
	1 1250	1250	1250	1250	1400	1520	1520

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test. The values indicated for the cross-sectional area of the vents should be

considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

DW20-40 H1/H2 (switchboard 2300 x 800 x 900) - area of outlet vents: 350 cm²

Туре		DW20	H1/H2		DW25	H1/2	DW32	H1/2	DW40	H1/2
Switchboard compo	sition									
		4 3 2 1	-			-			-	
Connection type							Ξ			
Busbar dimensions (mm)		3b. 100 x 5		4b. 100 x 5		3b. 100 x 10		4b. 100 x 10		
Ventilated switchboard (= IP31)		4								
		3		2000						
	T _a = 35 °C	2 2000	2000	2000	2375	2500	3040	3200	3320	3700
	a	1								
Sec.		4								
	T _a = 45 °C	3		2000						
2300		2 2000	2000	2000	2250	2380	2880	3100	3160	3500
		1								
	T _a = 55 °C	4								
		3		2000						
		2 2000	2000	2000	2100	2250	2690	2900	2960	3280
900 800		1								
800										
Note: (1) Area of outlet v	ents: 350 cm².									
(2) Area of inlet ver										
Non ventilated switc	hboard (= IP54)	4								
		3		2000						
	T = 35 °C	2 2000	2000	2000	2125	2275	2650	2850	3040	3320
	a	1								
		4								
		3		1900						
	T _a = 45 °C	2 1900	1960	1960	2000	2150	2550	2700	2880	3120
2300		1				1.00				
		4								
		3		1780						
	T _a = 55 °C	2 1800	1920	1920	1900	2020	2370	2530	2720	2960
		1	1020	1020	1000	2020	2010	2000	2120	2000

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test. The values indicated for the cross-sectional area of the vents should be

.800

considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

1

 $DW40b\text{-}63\ \text{H1/H2}$ (switchboard 2300 x 1400 x 1500) - area of outlet vents: 500 cm^2

Note: the values indicated in these tables have been extrapolated from test data and theoretical calculations. These tables are only intended as a guide and cannot replace industrial experience or a temperature rise test. The values indicated for the cross-sectional area of the vents should be considered as general indications only given that the thermal performance of a switchboard with natural ventilation depends on many parameters, e.g. shape, porosity and location of vents and air flow within the switchboard.

Air Circuit Breakers DW series **Dimensions and connection**

DW08 to DW32 Fixed 3/4 pole device Dimensions

Mounting on base plate or rails

Safety clearances

Mounting detail

Door cutout

	Insulated parts	Metal parts	Energised parts
Α	0	0	100
в	0	0	60

F: datum.

Note: (1) Without escutcheon. (2) With escutcheon. X and Y are the symmetry planes for a 3-pole device. A (*) An overhead clearance of 110 mm is required to remove the arc

chutes. An overhead clearance of 20 mm is required to remove the terminal block.
Connections

Horizontal rear connection

Vertical rear connection

Detail

View A detail. Detail

View A detail.

Front connection

DW08 to DW32 Drawout 3/4 pole device

Note: (*) Disconnected position.

Mounting on base plate or rails

Mounting detail

Safety clearances

	Insulated parts	Metal parts	Energised parts
Α	0	0	0
в	0	0	60
	^	÷	~

Note: (1) Without escutcheon. (2) With escutcheon. X and Y are the symmetry planes for a 3-pole device.

F: datum.

Connections

Horizontal rear connection

Vertical rear connection

47 ▼

L14.5

Detail

27

141

o 68

0

3 Ø11.5

View A detail. Detail

View A detail.

Front connection

298.5

F

X

Note: recommended connection screws: M10 class 8.8. Tightening torque: 50 Nm with contact washer.

DW40 Fixed 3/4 pole device Dimensions

Mounting on base plate or rails

Safety clearances

►++B+< mm

A (*)

	Insulated parts	Metal parts	Energised parts
Α	0	0	100
в	0	0	60

Note: (1) Without escutcheon.

(1) with de soutcheon.
 (2) With escutcheon.
 X and Y are the symmetry planes for a 3-pole device.
 A (*) An overhead clearance of 110 mm is required to remove the arc chutes.
 An overhead clearance of 20 mm is required to remove the terminal block.

F: datum.

Connections

Horizontal rear connection

Detail

Vertical rear connection

Detail

Note: recommended connection screws: M10 class 8.8. Tightening torque: 50 Nm with contact washer.

View A detail.

DW40 Drawout 3/4 pole device Dimensions

Note: (*) Disconnected position.

Mounting on base plate or rails

	Insulated parts	Metal parts	Energised parts
Α	0	0	0
В	0	0	60
F :0	latum.	·	

Note: (1) Without escutcheon.
(2) With escutcheon.
X and Y are the symmetry planes for a 3-pole device. The safety clearances take into account the space required to remove the arc chutes.

Connections

Horizontal rear connection

Vertical rear connection

View A detail.

Detail

Note: recommended connection screws: M10 class 8.8. Tightening torque: 50 Nm with contact washer.

DW40b to DW63 Fixed 3/4 pole device Dimensions

Mounting on base plate or rails

Safety clearances

Mounting detail

Door cutout

	Insulated parts	Metal parts	Energised parts
Α	0	0	100
в	0	0	60

Note: (1) Without escutcheon. (2) With escutcheon. X and Y are the symmetry planes for a 3-pole device.

A(*) An overhead clearance of 110 mm is required to remove the arc chutes. An overhead clearance of 20 mm is required to remove the terminal block.

F: datum.

Connections

Horizontal rear connection (DW40b - DW50)

230 -230 230 -115 -115 -115 -115 115 Ν ¦γ -76 ►-38 13 25 12.5 **▲** 47 Q Ċ ¥ 3 Ø11.5 L14.5

Detail

Detail

Vertical rear connection (DW63)

View A detail.

Detail

Note: recommended connection screws: M10 class 8.8. Tightening torque: 50 Nm with contact washer.

View A detail.

DW40b to DW63 Drawout 3/4 pole device Dimensions

Note: (*) Disconnected position.

Mounting on base plate or rails

Safety clearances

	Insulated parts	Metal parts	Energised parts
Α	0	0	0
В	0	0	60

Mounting detail

Door cutout

Note: (1) Without escutcheon.
(2) With escutcheon.
X and Y are the symmetry planes for a 3-pole device.

Connections

Horizontal rear connection (DW40b - DW50)

Vertical rear connection (DW40b - DW50)

Vertical rear connection (DW63)

Detail

Detail

View A detail.

Detail

20

348.5

F

190.5

Note: recommended connection screws: M10 s/s class A4 80. Tightening torque: 50 Nm with contact washer.

x

View A detail.

DW accessories

Mounting on backplate with special brackets (DW08 to 32 fixed)

Disconnectable front-connection adapter (DW08 to 32 fixed) Horizontal rear connection

Detail

View A detail.

Vertical rear connection

Note: recommended connection screws: **M10** class 8.8. Tightening torque: **50 Nm** with contact washer.

Detail

View A detail.

Rear panel cutout (drawout devices) DW08 to DW40 Rear view

Rear view

DW series

Drawout device

DW external modules Connection of auxilary wiring to terminal block

M6C relay module

External power supply module (AD)

Battery module (BAT) Mounting

One conductor only per connection point.

Delay unit for MN release

"Chassis" communication module Modbus

External sensor for source ground return (SGR) protection Sensor "MGDF summer" module

External sensor for external neutral Dimensions 400/2000 A (DW08 to DW20)

High: 162 mm.

1000/4000 A (DW025 to DW40)

High: 162 mm.

High: 168 mm.

Installation 400/2000 A (DW08 to DW20)

1000/4000 A (DW025 to DW40)

4000/6300 A (DW40b to DW63)

Rectangular sensor for earth leakage protection (Vigi)

470 x 160 mm window

Busbars path

470 x 160 mm window

Busbars spaced 115 mm centre-to-centre

4 bars 100 x 5.

4 bars 125 x 5.

DW08 to DW63 Fixed and drawout devices

The diagram is shown with circuits de-energised, all devices open, connected and charged and relays in normal position.

SDE1: fault-trip indication contact (s	supplied as standard)
--	-----------------------

- MN: undervoltage release
- MX2: shunt release

o

- MX1: shunt release (standard or communicating)
- XF : closing release (standard or communicating)
- PF: ready-to-close contact
- MCH: electric motor
- Note: when communicating MX or XF releases are used, the third wire (C3,A3) must be connected even if the communication module is not installed.

Note: A : digital ammeter.

• • • UC2 :

• • •

. . .

. . •

•

.

UC3 :

•

•

or

M6C :

•

H:P+harmonics. E : energy. (1) The PTE option with control unit E is not compatible with an external potential CT.

external module M6C)

Z4 = ZSI IN ST (short time) Z5 = ZSI IN GF (earth fault)

M1 = Vigi module input (Unit 7)

T1, T2, T3, T4 = external neutral

UC4: External Voltage Connector (PTE option)

M2C: 2 programmable contacts (internal relay)

ext. 24 V DC power supply required

ext. 24 V DC power supply required

M2, M3 = Vigi module input (Unit 7)

F2+, F1- external 24 V DC power supply

VN external voltage connector (must be connected to the neutral with a 3P circuit breaker)

6 programmable contacts (to be connected to the

P: A + power meter + additional protection.

Indication contacts											Chase
OF3	OF2	OF1	OF24	OF23	OF22	OF21	OF14	OF13	OF12	OF11	CD3
6 9	6 9	5 3	പ്	5	53	50	50	53	5	53	6 9
34	24	14	244	234	224	214	144	134	124	114	834
6 9	6-9	50	6 9	60	6 9	50	50	6 9	6 9	50	6.0
32	22	12	242	232	222	212	142	132	122	112	832
60	60	50	60	60	6 9	50	50	6 9	50	50	6 9
31	21	11	241	231	221	211	141	131	121	111	831
			or	or	or	or	or	or	or	or	
			EF24	EF23	EF22	EF21	EF14	EF13	EF12	EF11	CE6
			6 9	6 9	6 9	6 9	6 9	6 9	6 9	6 9	6 9
			248	238	228	218	148	138	128	118	364
			6 9	6 9	6 9	6 9	6 9	6 9	6 9	50	6 9
			246	236	226	216	146	136	126	116	362
			50	5 2	50	50	50	50	50	50	50
			245	235	225	215	145	135	125	115	361
tion cor	ntacts										Chase
0	N/OFF i	ndication	contacts	0	F24 or	Co	mbined	"connec	ted-		CD3
	OF3	OF3 OF2 ふ ふ 24 ふ ふ 22 ふ ふ 5 31 21	OF3 OF2 OF1 5 5 5 5 34 24 14 5 5 5 5 32 22 12 5 5 5 5 31 21 11 11 11 11	OF3 OF2 OF1 OF24 ふ ふ ふ ふ ふ ふ ふ ふ 34 24 14 244 ふ ふ ふ ふ ふ ふ 32 22 12 242 34 34 244 34 34 244 34 32 222 12 242 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 31 21 11 241 0r EF24 5 36 36 36 36 34 36 36 248 36 32 245 34<	OF3 OF2 OF1 OF24 OF23 ふ 3 3 ふ	OF3 OF2 OF1 OF24 OF23 OF22 ふ	OF3 OF2 OF1 OF24 OF23 OF22 OF21 OF3 OF24 212 OF3 OF24 OF23 OF22 OF21 OF3 <	OF3 OF2 OF1 ♂ ♂ ♂ ♂ ♂ ♂ ○<	OF3 OF2 OF1	OF3 OF2 OF1 OF24 OF23 OF22 OF21 OF14 OF13 OF12 34 24 14 5 <	OF3 OF2 OF1 OF24 OF23 OF22 OF21 OF14 OF13 OF12 OF11 34 24 14 5

OF3 OF2 OF1

Chassis contacts									
CD3	CD2	CD1	CE3	CE2	CE1	CE1 CT3		CT1	
6 9	6 9	6 9	6 9	6 9	50	50	50	5 9	
834	824	814	334	324	314	934	924	914	
6 9	6 9	6 9	60	50	6 9	6-9	50	6 9	
832	822	812	332	322	312	932	922	912	
5 0	6 9	6 9	60	50	50	6 9	50	6 9	
831	821	811	331 321 311		931 921		911		
	or						or		
CE6	CE5	CE4				CE9	CE8	CE7	
60	60	50				50	50	50	
364	354	344				394	384	374	
6 9	6 9	6 9				60	6 9	5 2	
362	352	342				392	382	372	

1			Chas	sis contact
F indication contacts	OF24 or EF24 OF23 or EF23 OF22 or EF21 OF14 or EF14 OF13 or EF13 OF12 or EF12 OF11 or EF11	Combined "connected- deconnected" indication contacts	CD3 CD2 CD1 or CE6 CE5 CE4 Key:	disconnect position contacts connected position contacts drawout d SDE1, OF

has	sis contacts
D3	disconnected

ර (351

7

ර ර 341

7

as	SIS COMUCIS				
)3)2)1	disconnected position contacts	CE3 CE2 CE1	connected position contacts	CT3 CT2 CT1	test position contacts
6 5 4	connected position contacts			or CE9 CE8 CE7 or	connected position contacts
:				CD6 CD5 CD4	disconnected position contacts
	drawout devic	e only.			

ර ර 391

2

ර (381

2

ර ද 371

Ъ

OF1, OF2, OF3, OF4 supplied as standard.

interconnected connections 7

(only one wire per connection point).

Earth-fault and earth-leakage protection Neutral protection Zone selective interlocking

External sensor (CT) for residual earth-fault protection

Connection of current-transformer secondary circuit for external neutral

DW equipped with a Unit 6 A/E/P/H:

shielded cable with 2 twisted pairs

T1 twisted with T2

• maximum length 4 meters

● cable cross-sectional area 0.4 to 1.5 mm²

• recommended cable: Belden 9552 or equivalent.

For proper wiring of neutral CT, refer to instruction

Bulletin 48041-082-03 shipped with it.

Do not remove Intelligent control unit factory-installed jumper between T1 and T2 unless neutral CT is connected.

If supply is via the top, follow the shematics.

If supply is via the bottom, control wiring is identical; for the power wiring, H1 is connected to the source side, H2 to the load side.

For four-pole versions, for residual earth-fault protection, the current transformer for the external neutral is not necessary. Connection for signal VN is required only for power measurements (3 \emptyset , 4 wires, 4CTs).

External transformer for source ground return (SGR) earth-fault protection

Connection of the secondary circuit

- DW equipped with a Unit 6 A/E/P/H:
- unshielded cable with 1 twisted pair
- maximum length 150 meters
- cable cross-sectional area 0.4 to 1.5 mm²
- terminals 5 and 6 may not be used at the same time
- ●use terminal 5 for DW08 to 40
- use terminal 6 for DW40b to 63
- recommended cable: Belden 9409 or equivalent.

Earth-leakage protection

Connection of the rectangular-sensor secondary circuit Use the cable shipped with the rectangular sensor.

Neutral protection

- Three pole circuit breaker:
 - · neutral protection is impossible with Units A, E
- DW equipped with Units P or H
- the current transformer for external neutral is necessary (the wiring diagram is identical to the one used for the residual earth-fault protection)
- Four pole circuit breaker:
 - DW equipped with Units A, E, P or H
 - the current transformer for external neutral is not necessary.

Zone selective interlocking

Zone-selective interlocking is used to reduce the electrodynamic forces exerted on the installation by shortening the time required to clear faults, while maintaining time discrimination between the various devices.

A pilot wire interconnects a number of circuit breakers equipped with Intelligent control units A/E/P/H, as illustrated in the diagram above.

The control unit detecting a fault sends a signal upstream and checks for a signal arriving from downstream. If there is a signal from downstream, the circuit breaker remains closed for the full duration of its tripping delay. If there is no signal from downstream, the circuit breaker opens immediately, regardless

of the tripping-delay setting. Fault 1.

ault 1.

Only circuit breaker A detects the fault. Because it receives no signal from downstream, it opens immediately, regardless of its tripping delay set to 0.3.

Fault 2.

Circuit breakers A and B detect the fault. Circuit breaker A receives a signal from B and remains closed for the full duration of its tripping delay set to 0.3. Circuit breaker B does not receive a signal from downstream and opens immediately, in spite of its tripping delay set to 0.2.

Wiring

- Maximum impedance: $2.7\Omega/300$ m.
- Capacity of connectors: 0.4 to 2.5 mm².
- Wires: single or multicore.
- Maximum lenght: 3000 m.
- Limits to device interconnection:
 - the common ZSI OUT (Z1) and the output ZSI OUT (Z2) can be connected to a maximum of 10 upstream device
 - a maximum of 100 downstream devices may be connected to the common ZSI - IN (Z3) and to an input ZSI - IN CR (Z4) or GF (Z5).

Communication

Connection of circuit breakers to the Modbus communication network

Fixed, electrically operated DW

Wiring of the COM option (with BCM ULP) Units P/H Units P/H Unit E Unit E M.o. 4 M.o. UL P 4wires 2w+ULP Modbus RS 485 2-wire without ULP module Modbus RS 485 2-wire + ULP with ULP module Modbus RS 485 4-wire A B A without ULP module External power supply 24 V External power supply 24 V ----External power supply 24 V ---tt. [#].-Gateway Gateway Gateway \pm Rx- Rx+ Tx- Tx+ $\frac{1}{2}$ Rx- Rx+ Tx- Tx+ ÷ Rx- Rx+ Tx- Tx+ Front display ſ T module P Ð Breaker ULP cord red black white blue E4 E5 E6 E2 E5 Ĕ5 Ĕ1 E2 Ĕ4 E6 Ĕ1 Ĕ4 E6 E1 E2 24 V ω Ŋ ω 24 V ω ω 24 \ σ Ŋ ω 0 < Þ 0 < Ŋ 0 < ⊳ ⊳ / Tx-/Tx+ /Tx+ /Tx· /Tx+ Rx+ / Rx-/ Rx+ T×-/ Rx-/ Rx+ / Rx-D D <u>D</u> D <u>D</u> <u>D</u> D 8 8 7 7 7 Customer terminal block Customer terminal block Customer terminal block DG JC d Com E5 E6 E3 E4 E1 E2 96

Withdrawable DW Wiring of the COM option (with COM)

L

I

I

1

1

24 VDC external power supply AD module

- The 24 V DC external power-supply (AD module) for the Intelligent control unit (F1- F2+) is not required for basic protections LSIG.
- The 24 V DC external power-supply (AD module) for the BCM ULP communication module (E1-E2) is required.
- The 24 V DC external power-supply (AD module) for the Front display module (0 V +24) is required.
- The 24 V DC external power-supply (AD module) for the programmable contact M2C/M6C is required.
- The same 24 V DC external power-supply (AD module) can be connected to Intelligent control unit, BCM ULP and Front display module, M2C/M6C.
 - If voltage > 480 V AC or in an environment with a high level of electromagnetic disturbances, use separate power supply: 1 power supply for Intelligent control unit (F1- F2+) and M2C/M6C, another power supply for BCM ULP and Front display module.
- With Units A/E, it is recommended to connect 24 V DC external power-supply (AD module) to the Intelligent control unit (F1- F2+) in order to keep available the display and the energy metering, even if Current < 20 % In.
- Note: in case of using the 24 V DC external power supply (AD module), maximum cable length between 24 V DC (G1, G2) and the control unit (F1-, F2+) must not exceed 10 meters.

The BAT battery module, mounted in series upstream of the AD module, ensures an uninterrupted supply of power if the AD module power supply fails.

The internal voltage taps are connected to the botton side of the circuit breaker.

With Units P/H, external voltage taps are possible using the PTE option. With this option, the internal voltage taps are disconnected and the voltage taps are connected to terminals VN, V1, V2, V3.

The PTE option is required for voltages less than 220 V and greater than 690 V (in which case a voltage transformer is compulsory). For three-pole devices, the system is supplied with terminal VN connected only to the control unit (Unit P).

When the PTE option is implemented, the voltage measurement input must be protected against short-circuits. Installed as close as possible to the busbars, this protection function is ensured

by a P25M circuit breaker (1 A rating) with an auxiliary contact (cat. no. 21104 and 21117).

This voltage measurement input is reserved exclusively for the control unit and must not ever be used to supply other circuits outside the switchboard.

Connection

The maximum length for each conductor supplying power to the trip unit or M6C module is 10 m.

Do not ground F2+, F1-, or power supply output:

- the positive terminal (F2+) on the trip unit must not be connected to earth ground
- the negative terminal (F1-) on the trip unit must not be connected to earth ground
- the output terminals (- and +) of the 24 V DC power supply must not be grounded.

Reduce electromagnetic interference:

- the input and output wires of the 24 V DC power supply must be physically separated as much as possible
- if the 24 V DC power supply wires cross power cables, they must cross perpendicularly. If this is not physically possible, the power supply conductors must be twisted together
- power supply conductors must be cut to length. Do not loop excess conductor.

Air Circuit Breakers DW series Additional characteristics

Intelligent control unit 2.0

Intelligent control unit 5.0, 6.0, 7.0

Air Circuit Breakers DW series Additional characteristics

Earth fault protection (Intelligent control unit 6.0)

ln < 400 A	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
400 A ≤ In ≤ 1200 A	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
ln > 1200 A	500	640	720	800	880	960	1040	1120	1200

IDMTL curve (Intelligent control units P and H)

To indicate your choice	s, check the appli	cable square bo	oxes	Indication contacts	
and enter the appropria	ate information in	the rectangles		OF - ON/OFF indication cont	
		the rectangles		Standard	4 OF 6 A-240
Circuit breaker or sv	vitch-disconnec	tor Quantity		Additional	1 block of 4 O
Туре		DW		EF - combined "connected/c	1 EF 6 A-240
Rating	08, 10, 12, 16, 2	20, 25, 32, 40,			1 EF low-leve
0	40b, 50, 63			SDE - "fault-trip" indication of	
Sensor rating Circuit breaker	A H1, H2			Standard	1 SDE 6 A-24
Number of poles	3 or 4			Additional	1 SDE 6 A-24
Type of equipment	Fixed			Programmable contacts	2 M2C contac
.)		vith chassis		Carriage switches	Low level
	Drawout v	vithout chassis		CE - "connected" position	Max. 3
	(moving p	art only)		CD - "disconnected" position	Max. 3
	Chassis a	lone		CT - "test" position	Max. 3
Control unit		_		AC - DW actuator for 6 CE - 3 C	
Protection only 2.0				Remote operation	
A - ammeter 2.0		6.0	7.0	Remote ON/OFF	MCH - gear m
E - Energy 2.0 P - power meter	5.0	6.0	7.0		XF - closing v
H - harmonic meter	5.0	6.0	7.0		MX - opening
LR - long-time rating p			7.0		PF - "ready to
	3	ig 0.4 to 0.8 lr			FF- Teauy to
		ng 0.8 to 1 Ir			BPFE - electr
	LROFF	0			
AD - external power-s	upply module	v			Res - electric
BAT - battery module				Demoste tribuninen	RAR - automa
TCE - external sensor	r (CT) for neutral a	and residual		Remote tripping	MN - undervo
earth-fault protection	(CT) for oversize	d noutral			R - delay unit
TCE - external sensor (CT) for oversized neutral (3P - Control unit P/H) and residual earth-fault protection			ion		Rr - adjustabl
TCW - external senso					2eme MX - sh
Rectangular sensor					
for earth-leakage prot	(x 160 mm)		VBP - ON/OFF pushbutton lo	ocking (by trans
PTE - external voltage	e measurement in	iput		OFF position locking:	
Communication COM ModBus	Device	Chase		VCPO - by padlocks VSPO - by keylocks	Kovook kit (w
module	Device	Chase		VSPO - by Reylocks	Keyock kit (w/
Connection					d have also
Horizontal	Тор	Bottor	n 🗌		1 keylock
Vertical	Тор	Bottor	n 🗌		2 identical key
Front	Тор	Bottor	n	<u></u>	2 keylocks, di
Interphase barriers		draw.		Chassis locking in "disconne	Keylock kit (w
Disconnectable front connection adapter	fixed			VSPD - by keylocks	REVIOCK KIL (W
Control unit Ir	= 1	lg =			1 kovlask
specific tr		tg =			1 keylock
setting Isd	= 10	l∆n =			2 identical key
tsd	= 0.4 Off	$\Delta t =$			2 keylocks, di
li	= 15	Neutral			Optional conr
Test report (bilingual)	with each device			VPEC - door interlock	
User manual: one per	up to 5 Japan	ese			
devices				VPOC - racking interlock	
Remark:				IPA - cable-type door interlock	
				VDC - mismatch protection VIVC - shutter position indication	on and locking
				IBPO - racking interlock betwe	· · ·
				DAE - automatic spring discha	
				Accessories	
				VO - safety shutters on chassis	3
				CDM - mechanical operation c	
				CB - auxiliary terminal shield for	
				CDP - escutcheon	-
				CP - transparent cover for escu	utcheon
				OP - blanking plate for escutch	

	Indication contacts									
OF - ON/OFF indication contacts										
Standard 4 OF 6 A-240 V AC (10 A-240 V AC and low-level)										
Additional	1 block of 4 OF		Max.2		qty					
EF - combined "connected/closed" contacts										
	1 EF 6 A-240 V AC		Max. 8		qty					
	1 EF low-level		Max.8		qty	_				
SDE - "fault-trip" indication co			Max. 0		99					
Standard 1 SDE 6 A-240 V AC										
			1 005							
Additional	1 SDE 6 A-240 V AC		1 SDE							
Programmable contacts	2 M2C contacts 6 M6C contact				cts					
Carriage switches	Low level		6 A-24	0 V AC)					
CE - "connected" position	Max. 3				qty					
CD - "disconnected" position	Max. 3									
CT - "test" position	Max. 3				qty qty					
-										
AC - DW actuator for 6 CE - 3 CD - 0 CT additional carriage switches qty										
Remote operation										
Remote ON/OFF	MCH - gear motor				v _					
	XF - closing voltage release	se			v					
	MX - opening voltage relea	ase			v					
	PF - "ready to close" conta	ict	Low lev	/el						
	···· , ···· · ····		6 A-24			\square				
	DDEE alastriaal alasian r				́ v Г					
	BPFE - electrical closing p		bullon							
	Res - electrical reset optio	n			v					
	RAR - automatic reset opt	ion								
Remote tripping	MN - undervoltage release	Э			V					
	R - delay unit (non-adjusta	uble)								
	Rr - adjustable delay unit	,				H				
	2eme MX - shunt release				vГ					
	Zenne WA - Shuhit release									
Locking						—				
VBP - ON/OFF pushbutton loc	cking (by transparent cov	er +	padlocks)							
OFF position locking:										
VCPO - by padlocks										
VSPO - by keylocks	Keyock kit (w/o keylock)		Profalux		Ronis					
			Kirk							
			NIIK		Castell					
	1 keylock			H						
	1 keylock		Profalux		Ronis					
	2 identical keylocks, 1 key		Profalux Profalux		Ronis Ronis					
	2 identical keylocks, 1 key 2 keylocks, different keys		Profalux		Ronis					
Chassis locking in "disconne	2 identical keylocks, 1 key 2 keylocks, different keys cted" position:		Profalux Profalux Profalux		Ronis Ronis Ronis					
Chassis locking in "disconne VSPD - by keylocks	2 identical keylocks, 1 key 2 keylocks, different keys		Profalux Profalux		Ronis Ronis					
•	2 identical keylocks, 1 key 2 keylocks, different keys cted" position:		Profalux Profalux Profalux		Ronis Ronis Ronis					
•	2 identical keylocks, 1 key 2 keylocks, different keys cted" position:		Profalux Profalux Profalux Profalux		Ronis Ronis Ronis Ronis					
•	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock		Profalux Profalux Profalux Profalux Kirk Profalux		Ronis Ronis Ronis Ronis Castell Ronis					
•	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key		Profalux Profalux Profalux Profalux Kirk Profalux Profalux		Ronis Ronis Ronis Ronis Castell Ronis Ronis					
•	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys		Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux		Ronis Ronis Ronis Castell Ronis Ronis Ronis					
VSPD - by keylocks	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/disco		Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi		Ronis Ronis Ronis Castell Ronis Ronis Ronis k					
•	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/disco		Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux		Ronis Ronis Ronis Castell Ronis Ronis Ronis k					
VSPD - by keylocks	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discor	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi	e of ch	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discor	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi ight-hand side	e of ch	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks VPEC - door interlock	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discor	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi ight-hand side	e of ch	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discor	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi ight-hand side	e of ch	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discor	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi ight-hand side	e of ch	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi ight-hand side	e of ch	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock betwee	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi ight-hand side	e of ch	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock betwee DAE - automatic spring discharg	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux eted/test positi ight-hand side	e of ch	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock betwee DAE - automatic spring discharg Accessories	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux ted/test positi ight-hand side	e of cha	Ronis Ronis Ronis Castell Ronis Ronis k assis ssis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock betwee DAE - automatic spring discharg Accessories VO - safety shutters on chassis	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon n and locking n crank and OFF pushbutto ge before breaker removal	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux ted/test positi ight-hand side	e of cha	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock betwee DAE - automatic spring dischar Accessories VO - safety shutters on chassis CDM - mechanical operation co	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon n and locking n crank and OFF pushbutto ge before breaker removal unter	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux ted/test positi ight-hand side	e of cha	Ronis Ronis Ronis Castell Ronis Ronis k assis ssis					
VSPD - by keylocks VPEC - door interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock between DAE - automatic spring discharg Accessories VO - safety shutters on chassis CDM - mechanical operation co CB - auxiliary terminal shield for	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon n and locking n crank and OFF pushbutto ge before breaker removal unter	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux ted/test positi ight-hand side	e of cha	Ronis Ronis Ronis Castell Ronis Ronis k assis ssis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock between DAE - automatic spring discharg Accessories VO - safety shutters on chassis CDM - mechanical operation co CB - auxiliary terminal shield for CDP - escutcheon	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon n and locking n crank and OFF pushbutto ge before breaker removal unter r chassis	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux ted/test positi ight-hand side	e of cha	Ronis Ronis Ronis Castell Ronis Ronis k assis ssis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock between DAE - automatic spring discharg Accessories VO - safety shutters on chassis CDM - mechanical operation co CB - auxiliary terminal shield for CDP - escutcheon CP - transparent cover for escut	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon n and locking n crank and OFF pushbutto ge before breaker removal unter r chassis cheon	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux ted/test positi ight-hand side	e of cha	Ronis Ronis Ronis Castell Ronis Ronis k assis ssis					
VSPD - by keylocks VPEC - door interlock VPOC - racking interlock IPA - cable-type door interlock VDC - mismatch protection VIVC - shutter position indicatio IBPO - racking interlock between DAE - automatic spring discharg Accessories VO - safety shutters on chassis CDM - mechanical operation co CB - auxiliary terminal shield for CDP - escutcheon	2 identical keylocks, 1 key 2 keylocks, different keys cted" position: Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/discon n and locking n crank and OFF pushbutto ge before breaker removal unter r chassis cheon	On r	Profalux Profalux Profalux Kirk Profalux Profalux Profalux Profalux ted/test positi ight-hand side eft-hand side	e of cha	Ronis Ronis Ronis Castell Ronis Ronis Ronis k assis ssis d for draw					

Mini test kit (33594)

L

Test terminal blocks for D/O (47074)

Test kits

Portable test kit (33595)

Fe Fuji Electric FA Components & Systems Co., Ltd.

5-7, Nihonbashi Odemma-cho, Chuo-ku, Tokyo, 103-0011, Japan URL http://www.fujielectric.co.jp/fcs/eng