科目番号 03-501203 科目名 固体物理第三 Course Number Title

| 教員名 | 求 幸年 | 1.5 単位 | 1.5 credit | 1.5 c

標準カリキュラム 物理工学科 Department

時期 3/4/5/6年 夏学期 火曜日 13:00-14:30 本郷

工61号講義室

講義の目的(Purpose): The purpose of this course is to introduce quantum many-body physics, connect this to what you already know from Solid State Physics 1&2, and extend this a bit further. This should provide a general conceptual framework for future specialized or advanced topics.

講義項目(Outline)

- Introduction
- 1.1 Where are we going?
- 1.2 General set up of the problem
- 1.3 Plan of this lecture
- Second quantization
- 2.1 Harmonic oscillator
- 2.2 Second quantization of many boson systems
- 2.3 Second quantization of many fermion systems
- 2.4 Second quantized form of the operators
- 2.5 Field operators
- Many electron systems
- 3.1 Homogeneous electron gas
- 3.2 General form in the Bloch representation
- 3.3 Hubbard model
- 3.4 Hartree approximation
- 3.5 Hartree-Fock approximation
- 3.6 Dielectric response
- Many boson systems
- 4.1 Phonons
- 4.2 Bose-Einstein condensation in noninteracting Bose gas
- 4.3 Interacting many boson system
- Electron-phonon interaction
- 5.1 General formulation
- 5.2 Second-order perturbation in electron-phonon interaction
- Superconductivity
- 6.1 Phenomena
- 6.2 Cooper pair instability
- 6.3 Bardeen-Cooper-Schrieffer (BCS) theory
- Magnetism
- 7.1 Magnetic moments
- 7.2 Paramagnetism of noninteracting magnetic moments
- 7.3. Exchange interactions
- 7.4. Models for localized spin systems
- 7.5. Mean-field approximation

関連する講義(Related Courses)

事前履修(Prerequisites):固体物理,第一,第二,量子力学,第一

並行履修(Parallel):

事後履修(After Completion):固体物理,第四

参考書(テキスト) / Reference (Textbook):

参考書(演習書) / Reference (Exercise Book):

講義ノートのリンク先 / Reference (Link to lecture notes):

成績評価(Grade Evaluation):期末試験

科目の性格(Description):

授業使用外国語(Language used in class):

備考(Notes):

理解すべき事項(Objectives)

- basics of quantum many-body physics
- second quantization
- elementary approximations for electron-electron correlations
- fundamental theory for superfluidity in many boson systems
- some consequences of electron-phonon coupling
- fundamental theory for superconductivity
- fundamental theory for magnetism