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GENERAL INSTRUCTIONS

Answers should be written in Japanese or English.

1. Do not open the problem booklets whether English or Japanese until the start of the
examination is announced.

2. Notify if you find any page missing, out of order or unclear.
3. Answer two problems out of the four problems of the problem booklet.

4. You are given two answer sheets. Use one answer sheet for each problem. You may use
the reverse side if necessary.

5. Print your examinee number and the problem number in the designated places at the top
of each answer sheet. The wedge-shaped marks on the top edge of the answer sheet
represent the problem number you answer on that sheet and also the class of master's
course (M) and doctoral course (D) applicants. At the end of the examination, follow
your proctor's instructions and cut out carefully the two corresponding wedge marks per
sheet with a pair of scissors.

6.  You may use the blank sheets of the problem booklet as working space and for draft
solutions, but you must not detach them.

7. Any answer sheet with marks or symbols irrelevant to your answers will be considered

invalid.

8. You may not take the booklet or answer sheets with you after the examination.

Examinee Number | No.

Write your examinee number in the space provided.



Problem 1

As shown in Figure 1.1, a slope with a uniform gap is made by placing two
identical triangular plates perpendicular to the horizontal plane and by
parallel translation of one of them in the direction normal to the plates. A
circular disk having an eccentric shaft, fixed to the disk in its normal direction,
is considered. The disk is inserted parallel to the two plates with its shaft on
the slope. There is no friction between the slope and the shaft. The disk
touches the plates only by the shaft. Now, as shown in Figure 1.2, an inertial
frame (x,y) is defined by the x axis taken horizontally in the right
direction and the y axis vertically upward. Moreover, a moving frame
(x',»"), which moves with the eccentric shaft (point A), is considered with the
x" axis taken in the descent direction and the y' axis in the direction normal
outward to the slope. The two triangular plates are fixed to the horizontal
plane.

Generally, the disk falls along the slope oscillating around the shaft under a

uniform gravity. Let us, then, consider a special situation where the falling
disk is stationary relative to the frame (x',)). As shown in Figure 1.2, let the

angle of the slope to the horizontal plane be denoted by & (0<6<7x/2), the

radius and the mass of the disk by a and m, respectively, the distance

between point A and the center of gravity O of the disk by 4, and the
acceleration of gravity by g. Answer the following questions, assuming that

the diameter and the mass of the shaft are negligible.

I. When R denotes the magnitude of the constraint force which the shaft
receives from the slope, write equations of motion in the x and y

directions for the center of gravity O relative to the inertial frame (x,y).

II. Obtain the x-component and the y-component of the acceleration G

of the point A relative to the frame (x,y).

[II. Obtain the magnitude of the constraint force R acting on point A.
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IV. Obtain the moment of inertia / of the disk around the shaft at point A.

Now let us consider the case where the amplitude of oscillation around the

shaft at point A is small.

V. When ¢ denotes the angular displacement from the center of oscillation,

obtain the period T of the oscillation, assuming that the perturbation of
the acceleration of point A due to the oscillation can be neglected. Use [/

to denote the moment of inertia of the disk around the shaft at point A.

VI. When the distance % is given by h=a(l-cos#), obtain the angle @ at

which the period becomes minimum.



Problem 2

Consider the attenuation of an electromagnetic wave in an electric
conductor (electrical conductivity o , dielectric constant &, magnetic
permeability 4). As shown in Fig. 2.1, an electromagnetic plane wave
(angular frequency @, time ¢) with an electric field (£,) along the x axis
and a magnetic field (H,) along the y axis propagates along the z axis
from vacuum to the conductor surface (infinite plane, z=0) with vertical
incidence. Using the Maxwell's equations (magnetic field H , electric field
E, current density J, electric flux density D, magnetic flux density B)
expressed by Egs. (1) and (2), answer the following questions about the

electromagnetic wave in a conductor (z>0). Here, o, & and u are

constants (real numbers) that are independent of @, and i is the imaginary
unit. %/// {//////////{/////
rot H = J+i—1: (1) .
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[. Derive two equations showing the relation between E,_ and H,.

1. Setting E, =E(z) & and Hy:H(z) e, the equations of E(z) and

H(z) are expressed by the following equations.

azf 52) = (~guw” +iucw)E(z) (3)
azf{ 2(2) ~ (—eu@’ +iucw)H(z) (4)

oz



Eqs. (3) and (4) are assumed to be 0&°E(z)/é2" =p’E(z) and
O’H(z)/0z* = p’H(z) , respectively. Setting p=a+ifi , we obtain the
following equations with respect to « and fS.
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Setting E(z)=E,e”, answer the following questions. Here, E, is a

constant (real number).

1. Express E_ using E,, a, [, and other variables.
2. The phase difference between E. and H is set to be y. Show
H, using E;, a, B, y,and other variables. In addition, obtain .

III. Using the results of Question II, express the ratio of the magnetic field
energy (U, ) and the electric field energy (U;), U, /U,, using o, & and

@ . In addition, the energy ratio, U, /U, differs for vacuum and a
conductor (o/ew >>1). Explain this in about; 50 words in English, or 100

characters in Japanese.

IV. Setting [= —2—, derive an approximate expression of FE(z) in a
HO®

conductor under the condition of o/ew >>1 using E,, [/, z, and other

variables. In addition, derive an approximate expression of H(z) in this
conductor using E,, o, [, z, and other variables. Furthermore, sketch

the real part of E(z) as a function of z// in this conductor.

V. Derive an approximate expression of E(z) in a material under the
condition of o/gw <<1 using E,, o, u, &, @, z,and other variables.

In addition, derive an approximate expression of H(z) in this material
using E,, o, u, €, @, z,and other variables. Furthermore, sketch the

real part of E(z) as a function of z in this material.



Problem 3

Consider the cooling of a gas by the Joule-Thomson effect.

I. As shown in Figure. 3.1, a porous plug is fixed in an adiabatic container.
Initially, a gas of n mol occupies volume ¥, in Region 1, which is on the

left side of the porous plug. Pressure F is applied by Piston 1 from the
left side of Region 1. On the right side of the porous plug, pressure P, is
applied by Piston 2. When P, > P,, the gas flows gradually from Region 1

to Region 2 through the porous plug and finally occupies volume ¥, in

Region 2 as shown in Figure 3.2. Show that this process is a constant

enthalpy process.
II. Show that a decrease in the pressure P results in an increase in the

entropy S when the enthalpy A remains constant.

The Joule-Thomson coefficient z,, can be expressed as,

or 1 oV
== =— - | - 1
:u_ll [GPJH Cp {T{GT]P V}, ( )

where 7T is the absolute temperature, ¥ is the volume, and C, is the

specific heat capacity at constant pressure.

III. Show that the Joule-Thomson coefficient for an ideal gas is zero and

explain the reason from the property of the ideal gas.

IV. Consider the Joule-Thomson coefficient for a non-ideal gas which obeys
the Berthelot equation of state {P+an3/(TV2)XV—nb): nRT, where a and

b are constants that depend on the gas. R is the gas constant.

1. Obtain (8P/dT), and (9P/V),.

2. Show that the Joule-Thomson coefficient can be approximated as,



u (3¢ _bj .
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Assume na <<RT’V and nb<<V for a dilute gas.

V. Obtain the critical temperature 7, of the gas which obeys the Berthelot

equation of state. Also write down the inversion temperature 7, in terms
of T, where T, gives u, =0 in Eq. (2).

VI. Show and explain the temperature range, where the cooling occurs by the
Joule-Thomson effect, using Eq. (2).

Region 1 Region 2 Region 1 Region 2

b.b
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Figure 3.1 Figure 3.2
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Problem 4

Consider a hydrogen atom. An electron of charge —e exists around a
proton of charge +e. The volume of these two particles are assumed to be
zero. The mass of the proton is large enough compared to that of the electron,
and we assume that the position of the proton is fixed. Now, the origin of the

Cartesian coordinate system is set at the position of the proton, and the
position of the electron is r:(x,y,z) and the distance from the origin to the

electron is r=[r|. Here % is the Planck’s constant divided by 2z and i

is the imaginary unit.

[. The Coulomb force between the proton and the electron is,

2
e

V5

(1)

= L -
dre,re

where g,is the dielectric constant in vacuum. Derive the potential energy

J' when the electron is at distance 7, from the proton. Set the constant
to satisfy the condition, ¥ —0(r — o).

II. When the system is in a steady state, show the Schrédinger equation for
the electron. Here the wave function of the electron is ¢, and the

eigenvalue of the energy of the electron is E.

[1I. Change the coordinate system from the Cartesian coordinate
system(x,y,z) to the polar coordinate system (}‘,9,46) as,

x = rsinfcos¢g
y =rsm@sin ¢ (2)
z'=rcosé.

Draw a figure of (x,y,z) coordinate system as shown in Figure 4.1 and
depict the relation between the (r,0,4) and the (x,y,z) coordinate
systems. Add appropreate lines and variables.
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Now consider to represent the Schrodinger equation that you have derived
in Question II to a polar coordinate system (:',B,gz‘s) defined as Eq. (2). Here,

we will try the separation of variables on the wave function for the electron

represented in the polar coordinate system, qa(r,@,a‘}) as,

o(r.0,0)= R(r)Y (6,9).
Then, Y(0,¢) should satisfy the equation,

AY(0.9)=CY(6.9).

~

where C is a constant and A is an operator defined as,

1 of(. a] 1 &
———|sinf— |+ —; =
sin @ 06 08 ) sin” @ o¢-

A=

It is known that there exists a set of orthonormal functions

solution of Eq. (4), which satisfies the following equations,

AY(6,4)=-10+1)Y"(6,9)
2 ym(6,9)=m¥"(6.9).
O¢

(3)

(4)
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Y[m(g’é) as a

(6)
(7)



IV. Here, we define an angular momentum operator around the origin of the
axes as,

i=(.0.1). (8)
It is known that the operator defined as,

Pl i, ©)

is represented in the polar coordinate (r,6,¢) as,

I*=-1A. (10)

Derive the expectation value <IZ>, where I is the square sum of the

angular momentum for an electron with the wave function ¢(r,t9,¢).

V. Derive the expectation value of (ll—<t’2>f for the electron whose wave

function is ¢(r,0,¢).

VI. When we measure I experimentally, what kind of results should be

expected, judging from the solution of Question V?

VII. It is known that the angular momentum around the z-axis is represented

in the polar coordinate as,

5 0

l, =—ih—. 11

: o (11)
Then, what kind of relationship exists between measured values of /. and

I’? Explain briefly.



